Connect with us

science

Les images montrent comment les électrons forment des paires supraconductrices qui glissent à travers les matériaux sans frottement. – Enseigner quotidiennement

Published

on

Lorsqu’un ordinateur portable ou un smartphone surchauffe, cela est dû à une perte de puissance en translation. Il en va de même pour les lignes électriques qui transportent l’électricité entre les villes. En effet, environ 10% de l’énergie générée est perdue lors du transport de l’électricité. C’est parce que les électrons qui portent une charge électrique le font en tant qu’agents libres, entrant en collision et collant à d’autres électrons lorsqu’ils se déplacent collectivement à travers les fils électriques et les lignes de transmission. Tout ce brouillage génère des frictions et, finalement, de la chaleur.

Mais lorsque les électrons s’accouplent, ils peuvent léviter au-dessus de la mêlée et glisser à travers un matériau sans frottement. Ce comportement «supraconducteur» se produit dans une gamme de matériaux, mais à des températures très froides. Si ces matériaux peuvent être rendus supraconducteurs près de la température ambiante, ils pourraient ouvrir la voie à des appareils sans perte, tels que des ordinateurs portables et des téléphones sans chaleur, et des lignes électriques ultra-efficaces. Mais d’abord, les scientifiques devront comprendre comment les électrons s’apparient en premier lieu.

Maintenant, de nouveaux instantanés de particules appariées dans un nuage d’atomes pourraient fournir des indices sur la façon dont les électrons s’apparient dans un matériau supraconducteur. Les physiciens du MIT ont capturé ces images, les premières à capturer directement le couplage des fermions – une classe maîtresse de particules qui comprend des électrons, ainsi que des protons, des neutrons et certains types d’atomes.

Dans ce cas, l’équipe du MIT a travaillé avec des fermions sous la forme d’atomes de potassium 40, et dans des conditions qui imitent le comportement des électrons dans certains matériaux supraconducteurs. Ils ont développé une technique d’imagerie d’un nuage ultrafroid d’atomes de potassium 40, qui leur a permis d’observer des appariements de particules, même lorsqu’elles sont séparées par une petite distance. Ils peuvent également repérer des modèles et des comportements intéressants, tels que la façon dont les paires formaient des échiquiers, qui ont été perturbés par des simples qui passaient.

Notes, rapportées aujourd’hui sur les sciences, peut servir de modèle visuel pour la façon dont les électrons sont couplés dans les matériaux supraconducteurs. Les résultats peuvent également aider à décrire comment les neutrons s’accouplent pour former le fluide super dense et intensément pressurisé à l’intérieur des étoiles à neutrons.

READ  L'instabilité des cellules solaires en pérovskite doit être résolue pour une adoption mondiale

« Le couplage de fermions est à la base de la supraconductivité et de nombreux phénomènes en physique nucléaire », déclare l’auteur de l’étude Martin Zwerlin, Thomas A. Frank au MIT. « Mais personne n’a vu ce couple sur place. C’était donc incroyable de pouvoir enfin voir ces images à l’écran, honnêtement. »

Les co-auteurs de l’étude Thomas Hartke, Butund Orig, Carter Turnbo et Ningyuan Jia sont tous membres du département de physique du MIT, du Harvard Center for Ultracold Atoms et du Electronics Research Laboratory.

vue décente

Observer directement le couplage électronique est une tâche impossible. Ils sont tout simplement trop petits et trop rapides pour être capturés avec les techniques d’imagerie actuelles. Pour comprendre leur comportement, des physiciens comme Zwierlein se sont penchés sur des systèmes d’atomes similaires. Les électrons et certains atomes, bien que de taille différente, sont similaires en ce sens qu’ils sont des fermions – des particules qui présentent une propriété connue sous le nom de « demi-spin droit ». Lorsque des fermions de spins opposés interagissent, ils peuvent s’apparier, comme le font les électrons dans un supraconducteur, et comme le font certains atomes dans un nuage de gaz.

Le groupe de Zwierlein a étudié le comportement de 40 atomes de potassium, connus sous le nom de fermions, qui peuvent être préparés dans l’un des deux états de spin. Lorsqu’un atome de potassium dans un spin interagit avec un atome dans un autre spin, il peut former une paire supraconductrice d’électrons. Mais dans des conditions normales de température ambiante, les atomes interagissent de manière floue et difficile à capturer.

Pour avoir une bonne idée de leur comportement, Zwerlin et ses collègues étudient les particules comme un gaz très dilué d’environ 1 000 atomes, en les plaçant dans des conditions nanokelvin très froides, qui ralentissent les atomes. Les chercheurs ont également le gaz à l’intérieur d’un réseau optique, ou un filet de lumière laser à l’intérieur duquel les atomes peuvent rebondir, que les chercheurs peuvent utiliser comme carte pour localiser les emplacements exacts des atomes.

READ  La Chine définit sa position sur l'utilisation des ressources spatiales

Dans leur nouvelle étude, l’équipe a apporté des améliorations à leur technologie existante d’imagerie des fermions qui leur a permis de geler temporairement les atomes sur place, puis de prendre des instantanés séparés d’atomes de potassium 40 avec un spin particulier ou l’autre. Les chercheurs peuvent ensuite superposer une image d’un type d’atome sur un autre, en cherchant à voir où les deux types s’associent et comment.

« Il était très difficile d’arriver à un point où nous pouvions réellement prendre ces photos », explique Zwierlein. « Vous pouvez imaginer au début avoir de gros trous dans l’imagerie, vos atomes s’enfuir, rien ne fonctionne. Nous avons eu des problèmes très complexes à résoudre en laboratoire au fil des ans, les étudiants ont eu une grande endurance, et enfin être capable de voir ces images ont été exaltantes. » Extrêmement « .

danse en duo

Ce que l’équipe a vu était le comportement de couplage entre les atomes prédit par le modèle de Hubbard – une théorie largement répandue censée détenir la clé du comportement des électrons dans les supraconducteurs à haute température, des matériaux qui présentent une supraconductivité à des niveaux relativement élevés (bien qu’ils ne le soient pas encore très intense). températures froides). Les prédictions sur la façon dont les électrons s’apparieront dans ces matériaux ont été testées par ce modèle, mais pas encore directement observées.

L’équipe a créé et photographié différents nuages ​​d’atomes des milliers de fois, traduisant chaque image en une version numérique en forme de grille. Chaque grille montrait l’emplacement des atomes des deux espèces (représentés en rouge par rapport au bleu dans leur article). À partir de ces cartes, ils ont pu voir les carrés de la grille avec un seul atome rouge ou bleu, les carrés où les atomes rouges et bleus sont localement appariés (représentés en blanc), ainsi que les carrés vides ne contenant aucun rouge. ou maïs bleu (noir).

Les images individuelles montrent en effet de nombreuses paires locales, et les atomes rouges et bleus sont très proches. En analysant des ensembles de centaines d’images, l’équipe peut montrer que les atomes apparaissent bien par paires, parfois liés en une paire serrée au sein d’un même carré, et à d’autres moments formant des paires plus lâches, séparées par un ou plusieurs espacements de réseau. Cette séparation physique, ou « couplage non local », est prédite par le modèle de Hubbard mais pas directement observée.

READ  Le télescope de l'ESO a capturé une lueur rose dans le ciel visible

Les chercheurs notent également que les groupes de paires semblent former un modèle d’échiquier plus large, et que ce modèle oscille dans et hors de la formation lorsqu’une paire s’aventure hors de sa case et déforme temporairement l’échiquier des autres paires. Ce phénomène, connu sous le nom de polaron, a également été prédit mais jamais vu directement.

« Dans cette soupe dynamique, les molécules sautent constamment les unes sur les autres, s’éloignent, mais elles ne s’éloignent jamais les unes des autres », note Zwerlin.

Le comportement de couplage entre ces atomes doit également se produire dans les électrons supraconducteurs, et Zwerlein affirme que les nouveaux instantanés de l’équipe aideront les scientifiques à comprendre les supraconducteurs à haute température, en fournissant éventuellement un aperçu de la façon dont ces matériaux peuvent être réglés à des températures plus élevées et plus pratiques. .

Zwierlein propose « Si vous ajustez notre gaz d’atomes à la densité d’électrons dans le métal, nous pensons que ce comportement de couplage devrait se produire bien au-dessus de la température ambiante. » « Cela donne beaucoup d’espoir et de confiance que de tels phénomènes doubles peuvent en principe se produire à des températures élevées, et il n’y a pas de limite a priori quant à la raison pour laquelle un supraconducteur à température ambiante pourrait ne pas exister un jour. »

Cette recherche a été soutenue, en partie, par la National Science Foundation des États-Unis, le Bureau de la recherche scientifique de l’US Air Force et une bourse du Vannevar Bush College.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les nuages ​​de poussière issus de l’exploitation minière en haute mer parcourent de longues distances – Recherche

Published

on

Les nuages ​​de poussière issus de l’exploitation minière en haute mer parcourent de longues distances – Recherche

Halbom a noté que l’exploitation minière en haute mer pourrait avoir lieu à des profondeurs en dessous desquelles la vie n’a pas encore été décrite.

Entre autres choses, le limon des fonds marins, qui sera remué lors de l’extraction des nodules de manganèse, constitue une préoccupation majeure. Étant donné que la vie dans les profondeurs marines est largement inconnue, l’assombrissement des eaux créera des effets totalement inconnus.

Pour ses recherches, Halbom a mené des expériences en utilisant différents instruments pour mesurer la quantité et la taille des particules en suspension dans l’eau. Au fond du Clarion-Clipperton Tract, une vaste zone située au fond de l’océan Pacifique, elle a effectué des mesures avec ces instruments avant et après avoir traîné un réseau de 500 kilogrammes de chaînes en acier sur le fond.

Le scientifique a noté : « La première chose qui attire votre attention lorsque vous effectuez des mesures dans cette zone est la clarté inimaginable de l’eau qui est naturellement. » « Après avoir tiré les chaînes d’avant en arrière sur 500 mètres, la grande majorité des matériaux agités se sont déposés en seulement quelques centaines de mètres. Cependant, nous avons également constaté qu’une petite partie des matériaux de fond agités était encore visible à des centaines de mètres. le site de test. » mètres au-dessus du fond et l’eau était plus sombre que d’habitude sur de longues distances depuis le site de test.

Dans une étude de suivi, à laquelle Halbom n’a pas participé, des « nuages ​​​​de poussière » étaient visibles même jusqu’à cinq kilomètres du site d’essai.

READ  Qu'est-il arrivé à ces CubeSats qui ont été lancés avec Artemis I ?

Les entreprises qui se disputent des concessions pour extraire des minéraux des fonds marins exploitent les résultats de ces expériences préliminaires comme une indication de l’impact réduit de l’exploitation minière en eaux profondes sur la vie au fond des mers. Cependant, cela est injustifié, a déclaré Henko de Stegter, co-promoteur des recherches de Halbom et océanographe à l’Institut royal néerlandais de recherche marine.

« Certes, sur la base de cette recherche doctorale et également des recherches ultérieures, nous savons que la grande majorité de la poussière se dépose rapidement », a-t-il ajouté. « Mais si l’on prend en compte la pureté habituelle de cette eau et de cette vie. en haute mer dépend d’une nourriture extrêmement rare dans l’eau, « Cette dernière partie peut avoir un impact important ».

Halbom et De Stegter appellent à davantage de recherches avant de faire des déclarations fermes sur l’impact de l’exploitation minière en haute mer.

« Il est vraiment trop tôt pour dire à ce stade à quel point ce dernier morceau de poussière qui pourrait se propager sur de si grandes distances pourrait être nocif ou nocif », a souligné De Stegter.

Continue Reading

science

Un concept de fusée à plasma pulsé financé par la NASA vise à envoyer des astronautes sur Mars d’ici deux mois

Published

on

Un concept de fusée à plasma pulsé financé par la NASA vise à envoyer des astronautes sur Mars d’ici deux mois

Un système de fusée innovant pourrait révolutionner les futures missions spatiales lointaines vers Mars, en réduisant leur nombre temps de voyage Sur la Planète Rouge pour quelques mois seulement.

L’objectif de faire atterrir des humains sur Mars a présenté une myriade de défis, notamment la nécessité de transporter rapidement de grosses charges utiles vers et depuis la planète lointaine, ce qui, selon l’emplacement de la Terre et de Mars, prendrait environ deux ans pour un aller-retour en utilisant technologie de propulsion actuelle.

Continue Reading

science

Les scientifiques pensent avoir découvert la source des « circuits radio individuels »

Published

on

Les scientifiques pensent avoir découvert la source des « circuits radio individuels »

Au cours des cinq dernières années, les astronomes ont découvert un nouveau type de phénomène astronomique qui existe à grande échelle, plus grande que des galaxies entières. Appelés ORC (circuits radio individuels), ils ressemblent à des anneaux géants d’ondes radio s’étendant vers l’extérieur comme une onde de choc.

Jusqu’à présent, les ORC n’ont jamais été observés à d’autres longueurs d’onde que la radio, mais selon une nouvelle… papier Libérés le 30 avril 2024, les astronomes ont capturé pour la première fois des rayons X associés à ORC.

Cette découverte fournit de nouveaux indices sur ce qui pourrait se cacher derrière la création de l’ORC.

Alors que de nombreux événements astronomiques, tels que les explosions de supernova, peuvent laisser des restes circulaires, les ORC semblent nécessiter une explication différente.

« L’énergie nécessaire pour produire une émission radio aussi étendue est très puissante », a déclaré Israa Bulbul, auteur principal de la nouvelle recherche. « Certaines simulations peuvent reproduire leurs formes mais pas leurs densités. Aucune simulation n’explique comment les ORC sont créés. »

Les ORC peuvent être difficiles à étudier, en partie parce qu’ils ne sont généralement visibles qu’aux longueurs d’onde radio. Ils n’ont jamais été associés à des émissions de rayons X ou d’infrarouges, et il n’y a aucun signe d’eux aux longueurs d’onde optiques.

Parfois, les ORC entourent une galaxie visible, mais pas toujours (huit ont été découverts jusqu’à présent autour de galaxies elliptiques connues).

À l’aide du télescope XMM-Newton de l’ESA, Bulbul et son équipe ont observé l’un des ORC connus les plus proches, un objet appelé Cloverleaf, et ont découvert une composante de rayons X frappante de cet objet.

READ  Le lancement du télescope James Webb de la NASA reporté à nouveau jusqu'au 24 décembre
Cette image multi-longueurs d’onde de l’ORC Cloverleaf (circuit radio unique) combine les observations de lumière visible de l’ancienne enquête DESI (Dark Energy Spectral Analyser) en blanc et jaune, les rayons X de XMM-Newton en bleu et la radio d’ASKAP (Australien). Carré) Matrice de kilomètres Pathfinder) en rouge. (X. Zhang et M. Kluge/MPE/B. Koribalski/CSIRO)

« C’est la première fois que quelqu’un voit l’émission de rayons X associée à un ORC », a déclaré Bulbul. « C’était la clé manquante pour percer le secret de la Formation Cloverleaf. »

Une radiographie d’une feuille de trèfle montre un gaz qui a été chauffé et déplacé par un processus. Dans ce cas, les émissions de rayons X révèlent deux amas de galaxies (environ une douzaine de galaxies au total) qui ont commencé à fusionner à l’intérieur de la feuille de trèfle, chauffant le gaz à 15 millions de degrés Fahrenheit.

Les fusions chaotiques de galaxies sont intéressantes, mais elles ne peuvent pas expliquer à elles seules une feuille de trèfle. Les fusions de galaxies se produisent dans tout l’univers, tandis que les ORC sont un phénomène rare. Il y a quelque chose d’unique qui se passe pour créer quelque chose comme Cloverleaf.

« Les processus de fusion constituent l’épine dorsale de la formation de la structure, mais il y a quelque chose de spécial dans ce système qui déclenche l’émission radio », a déclaré Bulbul. « Nous ne pouvons pas savoir de quoi il s’agit pour l’instant, nous avons donc besoin de données plus nombreuses et plus approfondies provenant à la fois des radiotélescopes et des télescopes à rayons X. »

Cela ne veut pas dire que les astronomes n’ont aucune idée.

« Un aperçu fascinant du signal radio puissant est que les trous noirs supermassifs résidents ont connu des épisodes d’activité intense dans le passé et que les électrons restants de cette activité ancienne ont été réaccélérés par cet événement de fusion », a déclaré Kim Weaver, scientifique du projet de la NASA, à XMM. -Newton.

READ  Genomics Tricorder Tech : nouveau génome séquencé et annoté de cyanobactéries thermophiles à l'aide de la plateforme de séquençage d'Oxford Nanopore Technologies

En d’autres termes, les ORC comme Cloverleaf peuvent nécessiter une histoire d’origine en deux parties : de puissantes émissions provenant de trous noirs actifs et supermassifs, suivies d’ondes de choc de fusion de galaxies qui donnent un deuxième coup de pouce à ces émissions.

Cet article a été initialement publié par L’univers aujourd’hui. est en train de lire Article original.

Continue Reading

Trending

Copyright © 2023