Connect with us

science

Technologie Tricorder : PicoRuler : règles moléculaires pour la microscopie haute résolution

Published

on

Technologie Tricorder : PicoRuler : règles moléculaires pour la microscopie haute résolution

PicoRuler : les règles moléculaires basées sur des protéines permettent de tester la résolution optique des méthodes de microscopie à super-résolution de pointe sur des biomolécules dans la gamme inférieure à 10 nm dans des conditions réalistes. (Photo : Gerti Bilyeu / Université de Würzburg, création DALL·E 3)

Note de l’éditeur: Vous et/ou vos assistants robotiques explorez un nouveau monde où la vie existe. Vous essayez de comprendre la génomique de base, la structure cellulaire et d’autres aspects de sa structure de base. Vous êtes très loin de chez vous et avez besoin d’informations à envoyer à votre domicile mais aussi pour orienter vos sorties de recherche et vos études en laboratoire sur place. Avoir un capteur 3D/portable capable de collecter de telles informations et de les transmettre à votre base d’origine pour une imagerie super-résolution pourrait être un excellent outil. Comment allons-nous équiper les explorateurs humains et robotiques de systèmes d’imagerie pour les missions d’équipe à distance ?


Les dernières méthodes de microscopie à super-résolution atteignent désormais une résolution optique de l’ordre de quelques nanomètres. Cela correspond à la résolution dans la gamme de tailles des molécules cellulaires. Cependant, il n’a pas encore été possible de vérifier la précision obtenue sur des éléments constitutifs cellulaires tels que des complexes multiprotéiques – car il n’existait pas de systèmes de référence biomoléculaires pouvant être marqués avec des colorants à des endroits précis à une distance de quelques nanomètres.

Une équipe dirigée par le Dr Gerti Bilyeu et le professeur Markus Sauer du Centre Rudolf Virchow – le Centre de bioimagerie intégrative et translationnelle de l’Université Julius Maximilians (JMU) de Würzburg en Bavière, en Allemagne, a marqué un tournant. Dans la revue Advanced Materials, ils présentent de nouvelles règles moléculaires biocompatibles, les PicoRulers (règles optiques pour l’étalonnage d’imagerie à base de protéines).

READ  La photosynthèse artificielle convertit le dioxyde de carbone en nourriture

En utilisant l’expansion du code génétique et la chimie des clics, l’équipe a réussi à construire ces règles moléculaires personnalisées. Ils peuvent être utilisés comme structures de référence biomoléculaires précises en microscopie à fluorescence.

Architecture PicoRuler basée sur PCNA pour la microscopie à super-résolution inférieure à 10 nm. A) Représentation de la conception de la règle PCNA, montrant les positions de trois fluorophores identiques à des intervalles de 6 nm. Ceci a été réalisé grâce à l’épitaxie bioorthogonale de ncAA, qui ont été spécifiquement introduits sur le site du PCNA par le GCE. Comme échantillon de référence, nous avons utilisé du PCNA marqué avec DOL ≈0,4. B) SDS-PAGE montrant la pureté du WT PCNA après chaque étape de purification. L : échelle protéique, His : après chromatographie d’affinité au nickel, Strep-Trap : après chromatographie d’affinité Strep-tag et SEC : après chromatographie d’exclusion de taille. La bande du monomère PCNA est marquée d’un triangle rouge. C) PCNA-6 (S186Norb) imagé par TEM sous coloration négative avec de l’acétate d’uranyle. D) Chromatogramme SEC de PCNA-6 (S186Norb) après marquage avec H-Tet-Cy5, confirmant la conjugaison réussie des fluorophores à la protéine PCNA. La fraction contenant le PicoRuler étiqueté est affichée en bleu. Barre d’échelle 5 nm (c) – Matériaux avancés

Un chef-d’œuvre technologique : la précision au niveau moléculaire

Les PicoRulers sont basés sur la protéine en trois parties PCNA (antigène nucléaire de cellules en prolifération), qui joue un rôle clé dans la réplication et la réparation de l’ADN. En insérant soigneusement des acides aminés non naturels dans des emplacements précisément définis, cette protéine a été modifiée de telle manière qu’elle peut cliquer spécifiquement sur des colorants fluorescents ou d’autres molécules avec une erreur de liaison minimale.

READ  Satellite de la NASA montrant comment nous pouvons suivre les émissions locales de dioxyde de carbone depuis l'espace : ScienceAlert

Cela permet aux chercheurs de tester l’exactitude des dernières méthodes de microscopie à super-résolution avec une résolution sans précédent sur une biomolécule cellulaire précisément définie.

Markus Sauer s’enthousiasme : « La capacité d’analyser des structures biologiques réelles à un niveau inférieur à 10 nm représente une nouvelle ère dans l’imagerie biologique. Par rapport aux macromolécules synthétiques utilisées précédemment, nos PicoRulers ne sont pas seulement biocompatibles. Ils offrent également une précision inégalée pour tester la précision sous conditions réalistes.

Ouvrir la porte à l’étude de processus complexes dans les cellules

L’application de cette technologie s’étend au-delà des frontières traditionnelles de la microscopie. «Nos PicoRulers ne sont pas seulement un outil permettant d’effectuer des mesures plus précises, mais elles ouvrent également la porte à une étude plus approfondie et plus détaillée des processus complexes qui se produisent à l’intérieur de nos cellules», explique Gertie Bilyeu.

Évaluation photophysique des PicoRulers basés sur PCNA et de l’origami ADN. a, b) Images dSTORM sélectionnées de PicoRulers triplement marqués (DOL ≈ 3,0) et (b) d’origami d’ADN (DOL ≈ 3,0) avec des distances interfluorophores de 6 nm, ainsi que leurs échantillons de référence à marquage unique (réf). Alors que chaque origami d’ADN contient un seul fluorophore, l’échantillon de référence PCNA affiche un DOL ≈0,4 et contient donc également des molécules PCNA non marquées et doublement marquées (taille de pixel 2 nm). Barres d’échelle, 10 nm. c) Occurrence relative des durées de vie OFF, nombre d’états (événements) détectés à partir de PicoRulers individuels dans les expériences dSTORM et nombre d’événements (localisations) détectés par image en fonction du temps (analyse d’empreintes digitales). d) Images FLIM de PicoRulers marqués H-Tet-Cy5 (la référence étiquetée individuellement est affichée en gris et un PicoRuler mesuré par triple-clic est affiché dans une boîte magenta) par imagerie confocale TCSPC dans un tampon de photo-commutation à une intensité d’irradiation de ≈ 2,5 kW cm−2. Pour minimiser le photoblanchiment du fluorophore, les images FLIM ont été enregistrées avec un temps d’intégration de 25 µs pour chaque pixel. Aucun seuil de gravité n’a été appliqué. Barres d’échelle, 2 μm. E) Désintégrations moyennes de fluorescence des PCNA PicoRulers étiquetés avec un (gris) ou trois (violets) fluorophores Cy5. f) Rapports Nc/Nl,av déterminés pour les molécules PCNA de référence à marquage unique et les PicoRulers à triple marquage dans des expériences de résistance à la collecte de photons (n ​​= 13) – Matériaux avancés.

Fort potentiel pour de futures applications

READ  Comment les cycles de vie stellaires sont-ils déterminés ?

Le développement ultérieur des PicoRulers pourrait modifier à long terme l’imagerie biologique et médicale avec une résolution moléculaire. Pour la première fois, il est devenu possible de valider et d’améliorer le potentiel de résolution de nouvelles méthodes de microscopie à super-résolution sur des échantillons biologiques. Cela en fait un outil précieux pour élucider l’organisation moléculaire et l’interaction des biomolécules dans les cellules à l’avenir.

PCNA en tant que nanoéchelle à base de protéines pour l’imagerie par fluorescence inférieure à 10 nmMatériaux avancés (accès libre)

Astrobiologie

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le télescope Webb de la NASA détecte les espèces de carbone les plus éloignées connues dans l’univers

Published

on

Le télescope Webb de la NASA détecte les espèces de carbone les plus éloignées connues dans l’univers

Les astronomes ont découvert le carbone connu le plus éloigné de l’univers, remontant à seulement 350 millions d’années après le Big Bang. Cette découverte – issue du télescope spatial Webb de la NASA – a utilisé les observations infrarouges de l’actuel Advanced Extragalactic Deep Survey pour identifier le carbone dans une toute jeune galaxie qui s’est formée peu de temps après la nuit des temps.

Les résultats obligeront probablement les cosmologistes et les théoriciens à repenser une grande partie de tout ce qu’ils savent sur l’enrichissement chimique de notre univers.

Dans une recherche acceptée pour publication dans la revue Astronomie et astrophysiqueUne équipe internationale dirigée par des astronomes de l’Université de Cambridge au Royaume-Uni a détaillé ses observations de cette ancienne galaxie, connue sous le nom de GS-z12. Il est situé à un redshift supérieur à 12, près de l’aube cosmique.

« Il s’agit non seulement de la première découverte confirmée de carbone, mais aussi de la première découverte confirmée de tout élément chimique autre que les éléments primitifs produits par le Big Bang (hydrogène, hélium et traces de lithium), Francesco DiEugenio, auteur principal de l’article. . Un astrophysicien de l’Université de Cambridge me l’a dit par e-mail.

La découverte de ce carbone si tôt dans l’histoire cosmique pourrait également signifier que quelque part là-bas, la vie aurait pu démarrer plus tôt que prévu.

Cette découverte remet également en question nos modèles d’évolution chimique, dit DiEugenio. « Nous ne nous attendions pas à voir des abondances aussi élevées de carbone en oxygène avant plus tard dans l’histoire de l’univers », dit-il. Par conséquent, notre découverte indique des canaux d’enrichissement chimique nouveaux et inattendus dans l’univers primitif, explique Diogenio.

En raison de la faiblesse exceptionnelle de ces galaxies lointaines, l’équipe n’a pu détecter le carbone qu’après environ 65 heures d’observations par spectroscopie proche infrarouge.

Les astronomes utilisent la spectroscopie pour étudier l’absorption et l’émission de lumière et d’autres rayonnements par la matière. Chaque élément possède sa propre empreinte chimique qui apparaît dans le spectre de la cible céleste, ce qui a permis dans ce cas d’identifier de manière surprenante le carbone à des époques aussi précoces.

Comment ce carbone a-t-il été créé ?

Diogenio dit que le Big Bang n’a produit que de l’hydrogène, de l’hélium et des traces de lithium. Par conséquent, ce carbone – et tout le carbone de l’univers – doit avoir été produit à l’intérieur des étoiles, dit-il. Une partie du carbone est produite dans des étoiles massives à courte durée de vie, et une autre dans des étoiles de faible masse à longue durée de vie, explique DiEugenio.

Carbone via supernovae

Dans GS-z12, qui a une masse d’environ 50 millions de masses solaires seulement, nous pouvons exclure le deuxième scénario, car l’univers était si jeune que les étoiles de faible masse n’avaient pas assez de temps pour apporter des quantités significatives de carbone, explique DiEugenio. . Il dit que cela signifie qu’il a été produit dans des étoiles massives. Cependant, le rapport carbone/oxygène que nous observons dans GS-z12 ne correspond pas à celui des étoiles massives connues, explique Diogenio. C’est pourquoi nous pensons que cette découverte de carbone pourrait avoir été produite dans des types d’étoiles massives plus exotiques, telles que les étoiles du troisième groupe, dit-il.

Les étoiles du groupe III sont un groupe théorique des premières étoiles de l’univers.

Selon certains modèles, lorsque ces premières étoiles ont explosé en supernova, elles auraient pu libérer moins d’énergie que prévu initialement, suggère l’Université de Cambridge. Dans ce cas, il s’agit du carbone, qui était présent dans l’exosphère des étoiles et était moins lié gravitationnellement que l’oxygène, selon l’université. Par conséquent, ce carbone aurait pu s’échapper plus facilement et se propager dans toute la galaxie, tandis qu’une grande quantité d’oxygène serait retombée et s’effondrerait dans un trou noir, a expliqué l’université.

Ce carbone serait-il le résultat d’une étoile de Population III devenue supernova ?

« Nous ne savons pas avec certitude quel type d’étoile a produit ce carbone », explique DiEugenio. Cependant, étant donné le temps très court disponible pour l’évolution stellaire, celle-ci doit provenir d’explosions de supernova provoquées par la mort d’étoiles massives, explique Diogenio. Selon lui, des preuves allant de l’univers local jusqu’à un milliard d’années après le Big Bang montrent que le rapport carbone/oxygène produit par les supernovae est bien inférieur à ce que nous observons dans cette galaxie.

Rapports carbone/oxygène

Expliquer le rapport carbone/oxygène élevé observé dans le GS-z12 est difficile dans le cadre actuel, explique DiEugenio. Dans ce contexte, il existe certains scénarios théoriques dans lesquels les supernovae du groupe III produisent des ratios carbone/oxygène élevés ; Il dit que ce serait un scénario approprié, mais qu’il doit être confirmé.

Quant au carbone découvert ?

Diogenio dit qu’il a été produit dans l’une des coques internes brûlant de l’hélium d’une étoile massive alors qu’elle était sur le point de devenir une supernova. Il dit que lorsque l’étoile est devenue supernova, son gaz riche en carbone est revenu dans la galaxie.

C’est à ce moment-là qu’il est devenu détectable.

Ces premières supernovae et leurs sous-produits représentent les premières étapes de l’enrichissement chimique cosmique. Des milliards d’années plus tard, cette évolution chimique a conduit à l’émergence d’un groupe de galaxies telles que notre propre Voie Lactée ; Chimiquement riche et – sur cette planète du moins – regorgeant de vie basée sur le carbone.

READ  La Chine pourrait inclure un hélicoptère dans la mission de retour d'échantillons sur Mars
Continue Reading

science

« La danse cosmique du feu et de la glace »

Published

on

« La danse cosmique du feu et de la glace »

Le système stellaire est situé à 3 400 années-lumière.

Vendredi, l’Agence spatiale européenne (ESA) a publié une image étonnante d’un mystérieux système stellaire. L’étoile est située à 3 400 années-lumière dans la constellation du Sagittaire et se compose d’une géante rouge et de sa compagne naine blanche. L’Agence spatiale européenne l’a qualifié de « danse cosmique de glace et de feu », notant qu’elle devient de plus en plus chaude et faible.

Selon l’Agence spatiale européenne, ces étoiles mystérieuses ont surpris les astronomes avec une « éruption semblable à une nova » en 1975, augmentant leur luminosité d’environ 250 fois.

« C’est l’histoire de deux étoiles : une géante rouge fait généreusement don de matière à sa compagne naine blanche, créant ainsi un spectacle éblouissant. Du brouillard rouge ? Ce sont les vents forts de la géante rouge ! ️Mais Mira HM Sge est un véritable mystère. En 1975, les astronomes ont été surpris par une explosion semblable à une nova, mais contrairement à la plupart des novae, elle n’a pas disparu. Depuis, il fait plus chaud mais plus faible ! », lit-on dans la légende du message. Le message comprend quatre images qui, ensemble, constituent l’image complète du système stellaire symbiote.

Voir les photos ici :

Les astronomes ont utilisé de nouvelles données de Hubble et du SOFIA (Observatoire stratosphérique pour l’astronomie infrarouge) de la NASA, ainsi que des données d’archives d’autres missions, pour revisiter le système stellaire binaire.

« Grâce à Hubble et au télescope SOFIA, à la retraite, nous avons résolu l’énigme ensemble. Les données ultraviolettes de Hubble révèlent des températures torrides autour de la naine blanche, tandis que SOFIA a détecté de l’eau s’écoulant à des vitesses incroyables, indiquant la présence d’un disque de matière en rotation.

READ  Satellite de la NASA montrant comment nous pouvons suivre les émissions locales de dioxyde de carbone depuis l'espace : ScienceAlert

Entre avril et septembre 1975, la luminosité du système binaire HM Sagittae a été multipliée par 250. Récemment, des observations montrent que le système est devenu plus chaud, mais paradoxalement s’est légèrement atténué.

En réponse à l’image, un utilisateur a écrit : « C’est vraiment incroyable la danse des échanges matériels entre la géante rouge et la naine blanche. »

Un autre a commenté : « C’est tellement beau et mystérieux, j’adore ça. » Un troisième a déclaré : « Superbes clichés ».

Continue Reading

science

« Danse cosmique du feu et de la glace » : l’ESA partage des images époustouflantes du « mystérieux » système stellaire

Published

on

« Danse cosmique du feu et de la glace » : l’ESA partage des images époustouflantes du « mystérieux » système stellaire

L’Agence spatiale européenne a laissé les internautes impressionnés après avoir partagé vendredi un aperçu du « mystérieux » système stellaire Mira HM Sge. L’étoile symbiotique est située à 3 400 années-lumière dans la constellation du Sagittaire et se compose d’une géante rouge et de sa compagne naine blanche. L’Agence spatiale européenne l’a qualifié de « danse cosmique du feu et de la glace », alors que l’étoile devenait de plus en plus chaude et plus sombre.

« La matière saigne de la géante rouge et tombe sur la naine, la rendant extrêmement brillante. Ce système a éclaté pour la première fois sous forme de nova en 1975. La brume rouge témoigne des vents stellaires. Son profil sur le site Web de la NASA indique que la nébuleuse est d’environ un quart de celle-ci. une année optique.

Le pont gazeux reliant actuellement l’étoile géante à la naine blanche devrait s’étendre sur environ 3,2 milliards de kilomètres.

Selon l’Agence spatiale européenne, ces étoiles mystérieuses ont surpris les astronomes avec une « explosion semblable à une nova » en 1975, augmentant leur luminosité d’environ 250 fois. Cependant, contrairement à la plupart des novae, elle ne s’est pas éteinte au cours des décennies suivantes. Des observations récentes suggèrent que le système est devenu plus chaud, mais qu’il s’est paradoxalement légèrement atténué.

« Grâce à Hubble et au télescope SOFIA, à la retraite, nous avons résolu l’énigme ensemble. Les données ultraviolettes de Hubble révèlent des températures torrides autour de la naine blanche, tandis que SOFIA a détecté de l’eau s’écoulant à des vitesses incroyables, suggérant… « Il y a un disque de matière en rotation. « .

READ  La Chine pourrait inclure un hélicoptère dans la mission de retour d'échantillons sur Mars

Les données UV de Hubble indiquent que la température estimée de la naine blanche et du disque d’accrétion est passée de moins de 220 000 degrés Celsius en 1989 à plus de 250 000 degrés Celsius.

L’équipe de la NASA a également utilisé le télescope volant SOFIA, aujourd’hui retiré, pour détecter l’eau, les gaz et la poussière circulant dans et autour du système. Les données spectroscopiques infrarouges montrent que l’étoile géante, qui produit de grandes quantités de poussière, a retrouvé son comportement normal deux ans seulement après l’explosion, mais qu’elle est devenue plus faible ces dernières années. SOFIA a aidé les astronomes à voir l’eau se déplacer à environ 28 kilomètres par seconde, ce qui, selon eux, est la vitesse du disque d’accrétion sifflant autour de la naine blanche.

(Avec la contribution des agences)

3,6 millions d’Indiens nous ont rendu visite en une seule journée et nous ont choisis comme plate-forme incontestée de l’Inde pour les résultats des élections générales. Découvrez les dernières mises à jour ici!

Continue Reading

Trending

Copyright © 2023