Connect with us

science

Actualité Optique et Photonique – Un « télescope » basé sur les rayons gamma

Published

on

Actualité Optique et Photonique – Un « télescope » basé sur les rayons gamma

[Enlarge image]

Une équipe de chercheurs de plusieurs universités japonaises a développé un observatoire de rayons gamma embarqué sur un ballon et constitué d'un ensemble de dizaines de films minces en émulsion. Les traces de particules dues au rayonnement apparaissent sous forme de petits points sur chaque couche de film individuelle. [Image: GRAINE collaboration]

À l'ère de la photographie numérique haute résolution instantanément disponible, il est facile de conclure que les anciennes technologies photographiques (les films traditionnels à base d'émulsion) n'ont pas grand-chose à offrir. Cependant, il semble que les films en émulsion aient encore leur utilité.

Exemple concret : dans des travaux récemment rapportés, une équipe scientifique basée au Japon a utilisé un nouveau « télescope » constitué d’une « pile de crêpes » de films d’émulsion pour imager les rayons gamma du lointain pulsar Vela avec ce que les auteurs disent être « le niveau le plus élevé ». « de résolution angulaire. pour tout télescope à rayons gamma à ce jour » (Astrophys. J., doi : 10.3847/1538-4357/ad0973). Heureusement, ils ont également profité d’une autre technologie aux racines historiques anciennes : un ballon scientifique pour faire voler le télescope basé sur un plateau de tournage en hauteur pour observer de plus près le ciel des rayons gamma.

Au cours d'un vol en ballon de 900 kilomètres à travers le centre de l'Australie, l'instrument à l'aspect inconfortable a pu capturer « plusieurs milliards de trajectoires » de paires électron-positon dérivées des rayons gamma, « avec une résolution de 1/10 000 mm », selon l'étude co. -auteur Shigeki Aoki de l'Université de Cuba. La résolution de l’instrument à film a permis de mesurer le pulsar avec une résolution « plus de 40 fois supérieure à celle des télescopes à rayons gamma conventionnels », ajoute Aoki.

Vers de meilleures mesures des rayons gamma

Bien entendu, les télescopes à rayons gamma ne manquent pas aujourd’hui. Par exemple, le télescope spatial à rayons gamma Fermi en orbite autour de la Terre, lancé en 2008, a effectué des observations révolutionnaires au cours de sa longue mission, tout comme d'autres missions spatiales telles que l'Observatoire intégral de l'Agence spatiale européenne. Plusieurs observatoires au sol scannent également le ciel aux rayons gamma.

READ  Avertir! Un astéroïde potentiellement dangereux de la taille d'un stade s'approche dangereusement de la Terre aujourd'hui !

Le problème avec la technologie actuelle des télescopes à rayons gamma, selon la nouvelle étude, est qu'elle ne parvient pas à déterminer l'angle d'incidence des rayons gamma et n'est pas sensible à la polarisation. Améliorer ces lacunes est « la clé pour réaliser les prochaines avancées dans le domaine de l’astronomie des rayons gamma », affirment les auteurs.

Empiler des crêpes (tenir le sirop)

Un artiste se moque d'un détecteur à couche mince comme d'une pile de crêpes

Une photo de presse inhabituelle compare la pile de films d'émulsion dans le nouveau détecteur de l'équipe à une pile de crêpes, et le trajet des rayons gamma à une paille traversant la pile en biais. [Image: Kobe University]

Il y a plus de dix ans, les chercheurs à l’origine de cette nouvelle recherche ont trouvé une solution à ce dilemme. En empilant un grand nombre de films d’émulsion sensibles aux rayons gamma, ils peuvent capturer les trajectoires des paires d’électrons et de positons créées par les rayons gamma (grâce au processus de production de paires) lorsqu’ils traversent chaque couche de la pile de films.

Dans un communiqué de presse (et une photo quelque peu comique) accompagnant la recherche, une pile de films d'émulsion était comparée à une pile de crêpes. Tout comme l'angle de la paille collée sur la pile de tartes peut être mesuré par la position du trou dans chaque couche successive, de même l'angle d'incidence des rayons gamma sur la pile de films peut être retracé – avec des angles extrêmes. précision. Étant donné que l’azimut du plan de la paire électron-positon est lié (bien que faiblement) à la polarisation des rayons gamma, l’installation peut également être utilisée pour des mesures de polarisation.

Contrôler la situation et le temps

L’équipe a associé ce concept à des systèmes supplémentaires intelligents pour contrôler le lieu et l’heure de leurs observations par ballon. Le cœur de l’appareil, que les chercheurs appellent le « transducteur », est un empilement de 33 mm d’épaisseur de 100 couches de film, chacune mesurant 330 micromètres d’épaisseur et contenant chacune une couche d’émulsion de cristaux de bromure d’argent de 75 micromètres d’épaisseur. Le transducteur est conçu pour détecter et suivre les électrons et les positrons produits à travers la paire sur une distance statistiquement significative, permettant ainsi une mesure angulaire.

L’équipe devait également s’assurer qu’elle était capable de reconstruire l’emplacement exact (en particulier l’attitude) de l’instrument embarqué sur le ballon et le moment exact de chacun des trajets de rayons gamma qu’il capturait. Pour la première exigence, les chercheurs ont utilisé un réseau de trois caméras stellaires séparées de 90 degrés en azimut. Cela permet d'enregistrer l'orientation de l'instrument par rapport aux étoiles fixes, puis de mesurer et de corriger l'orientation de l'instrument à chaque observation.

Entre-temps, pour déterminer le timing, l'équipe a développé un « horodatage » innovant, composé de trois étages horizontaux de films multicouches supplémentaires, chaque étage oscillant d'avant en arrière sous le transformateur stationnaire à des vitesses uniformes mais différentes. Le déplacement relatif des trajectoires capturées dans les couches supérieures fixes du transformateur à travers les trois phases inférieures dépendant du temps permet un horodatage précis pour chaque événement de rayons gamma.

Premier voyage

En avril 2018, alors que les vents étaient favorables pour un vol entre Alice Springs et Longreach, dans le centre de l'Australie, des chercheurs ont emballé cet instrument inhabituel dans une gondole fermée et pressurisée et l'ont attaché à un ballon scientifique à haute altitude. Le ballon a transporté l'appareil à une hauteur de 38 kilomètres au-dessus de la surface de la Terre. Après un voyage de 17,4 heures et 900 kilomètres, la télécabine a été lancée et a dérivé vers la Terre en parachute, où elle a été récupérée par des scientifiques. Le vol est programmé pour inclure 6 heures pendant lesquelles le pulsar Velea – une étoile à neutrons en rotation rapide située à environ 800 années-lumière de la Terre – peut être observé en continu dans le ciel.

Pour donner un sens à la grande quantité de données collectées au cours du court vol, les chercheurs ont utilisé un système automatisé à haut débit récemment développé pour d’autres études sur les émulsions nucléaires. Ce système à grande vitesse, combiné aux données d'un convertisseur et d'une émulsion d'horodatage, leur a permis de développer une image du pulsar en tant que source ponctuelle, avec une résolution signalée plus de 40 fois meilleure que les efforts précédents.

« Nous avons obtenu l'imagerie de la plus haute résolution du pulsar Vela à ce jour et validé le fonctionnement du télescope à émulsion à rayons gamma à la résolution angulaire la plus élevée dans ce régime énergétique », a écrit l'équipe.

Prochaine étape : l'agrandissement

Même si ces premiers résultats semblent impressionnants, l’expérience Vela pulsar constitue essentiellement une preuve de concept et l’équipe a de grands projets pour l’avenir. Les chercheurs se concentreront particulièrement sur l’augmentation de la zone sensible du détecteur et la réalisation de vols plus longs. Ils amélioreront également l'efficacité du traitement des énormes données collectées par le système (peut-être un facteur important, à en juger par les plus de cinq années entre le vol d'avril 2018 et la publication du journal en décembre 2023).

« Grâce aux expériences scientifiques embarquées sur des ballons, nous pouvons essayer de contribuer à de nombreux domaines de l'astrophysique, en particulier en ouvrant les télescopes à rayons gamma à l'astronomie multi-messagers », a déclaré Aoki dans un communiqué de presse accompagnant la recherche, « où des mesures simultanées de la le même événement est nécessaire grâce à différentes techniques.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

En découvrant le trou bleu le plus profond du monde, on pense qu'il contient des grottes et des tunnels cachés.

Published

on

En découvrant le trou bleu le plus profond du monde, on pense qu'il contient des grottes et des tunnels cachés.

Les chercheurs ont découvert que le trou bleu de Tam Ga, au Mexique, est le trou sous-marin connu le plus profond au monde, et ils n'ont pas encore atteint le fond.

De nouvelles mesures indiquent que le Tam Ja Blue Hole (TJBH), situé dans la baie de Chetumal, au large de la côte sud-est de la péninsule du Yucatán, s'étend à au moins 1 380 pieds (420 mètres) sous le niveau de la mer.

Continue Reading

science

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Published

on

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Carte de la structure cristalline de l'alliage obtenue à partir de la diffraction par rétrodiffusion des électrons au microscope électronique à balayage. Chaque couleur représente une partie du cristal où la structure répétitive change d'orientation 3D. Crédit : Laboratoire de Berkeley

Des chercheurs ont découvert un minéral inhabituel Alliage Il ne se fissurera pas à des températures extrêmes en raison de la flexion ou de la flexion des cristaux de l'alliage au niveau atomique.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium a choqué les scientifiques des matériaux par sa résistance et sa ténacité étonnantes à des températures extrêmement chaudes et froides, une combinaison de propriétés qui semblaient jusqu'à présent presque impossibles à obtenir. Dans ce contexte, la résistance est définie comme la quantité de force qu'un matériau peut supporter avant d'être déformé de manière permanente par rapport à sa forme d'origine, et la ténacité est sa résistance à la rupture (fissuration). La résilience de l'alliage à la flexion et à la rupture dans un large éventail de conditions pourrait ouvrir la porte à une nouvelle classe de matériaux pour les moteurs de nouvelle génération, capables de fonctionner plus efficacement.

L'équipe, dirigée par Robert Ritchie du Lawrence Berkeley National Laboratory (Berkeley Laboratory) et de l'UC Berkeley, en collaboration avec des groupes dirigés par les professeurs Deran Apelian de l'UC Irvine et Enrique Lavernia de la Texas A&M University, a découvert puis découvert les propriétés étonnantes de l'alliage. . Comment résultent-ils des interactions dans la structure atomique ? Leurs travaux ont été décrits dans une étude récemment publiée dans la revue les sciences.

« L'efficacité de la conversion de la chaleur en électricité ou en propulsion est déterminée par la température à laquelle le carburant est brûlé : plus il est chaud, mieux c'est. Cependant, la température de fonctionnement est limitée par les matériaux structurels auxquels il doit résister. » Nous avons épuisé la possibilité d’améliorer les matériaux que nous utilisons actuellement à haute température, et il existe un grand besoin de nouveaux matériaux métalliques. C’est ce que promet cet alliage.

L'alliage dans cette étude appartient à une nouvelle classe de métaux connus sous le nom d'alliages résistants aux températures élevées ou moyennes (RHEA/RMEA). La plupart des métaux que nous voyons dans les applications commerciales ou industrielles sont des alliages constitués d'un métal parent mélangé à de petites quantités d'autres éléments, mais les RHEA et les RMEA sont fabriqués en mélangeant des quantités presque égales d'éléments métalliques avec des températures de fusion très élevées, ce qui leur confère des propriétés encore uniques. . Les scientifiques le découvrent. Le groupe de Ritchie étudie ces alliages depuis plusieurs années en raison de leur potentiel pour les applications à haute température.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium

Cette carte de structure du matériau montre des bandes de réseau qui se forment près du fond de fissure lorsque les fissures se propagent (de gauche à droite) dans l'alliage à 25°C, température ambiante. Réalisé à l'aide d'un détecteur de diffraction de rétrodiffusion d'électrons dans un microscope électronique à balayage. Crédit : Laboratoire de Berkeley

« Notre équipe a déjà effectué des travaux sur les RHEA et les RMEA et a découvert que ces matériaux sont très résistants, mais ont généralement une très faible ténacité à la rupture, c'est pourquoi nous avons été choqués lorsque cet alliage a montré une ténacité exceptionnellement élevée », a déclaré le co-auteur. Puneet Kumar, chercheur postdoctoral du groupe.

READ  Incorporé dans le génome des microbes - les scientifiques ont découvert plus de 30 000 virus "cachés"

Selon Cook, la plupart des RMEA ont une ténacité inférieure à 10 MPa, ce qui en fait l'un des métaux les plus fragiles de tous. Les meilleurs aciers cryogéniques, spécialement conçus pour résister à la casse, sont environ 20 fois plus résistants que ces matériaux. Cependant, le niobium, le tantale, le titane et le hafnium (Nb45Ta25T15Haute fréquence15) L'alliage RMEA était capable de surpasser même l'acier cryogénique, enregistrant des performances plus de 25 fois supérieures à celles du RMEA typique à température ambiante.

Mais les moteurs ne fonctionnent pas à température ambiante. Les scientifiques ont évalué la résistance et la durabilité à cinq températures totales : -196°C (température de l'azote liquide), 25°C (température ambiante), 800°C, 950°C et 1 200°C. Cette dernière température est environ 1/5 de la température de la surface du Soleil.

L’équipe a découvert que l’alliage présente sa plus grande résistance au froid et s’affaiblit légèrement à mesure que la température augmente, mais présente toujours des chiffres impressionnants sur une large plage. La ténacité à la rupture, calculée à partir de la force nécessaire pour propager une fissure existante dans un matériau, était élevée à toutes les températures.

Révéler les arrangements atomiques

Presque tous les alliages métalliques sont cristallins, ce qui signifie que les atomes contenus dans le matériau sont disposés en unités répétitives. Cependant, aucun cristal n’est parfait, ils contiennent tous des imperfections. Le défaut le plus important qui se déplace est appelé dislocation, c'est-à-dire un plan imparfait d'atomes dans le cristal. Lorsqu’une force est appliquée au métal, plusieurs dislocations se déplacent pour s’adapter au changement de forme.

READ  Le tremblement de terre massif qui a secoué Mars est cinq fois plus puissant que tout autre tremblement de terre

Par exemple, lorsque vous pliez un trombone en aluminium, le mouvement des dislocations à l’intérieur du trombone s’adapte au changement de forme. Cependant, le mouvement des dislocations devient plus difficile à basse température et, par conséquent, de nombreux matériaux deviennent cassants à basse température car les dislocations ne peuvent pas bouger. C'est pourquoi la coque en acier du Titanic s'est brisée lorsqu'elle a heurté un iceberg. Les éléments à haute température de fusion et leurs alliages poussent cela à l'extrême, nombre d'entre eux restant cassants même jusqu'à 800°C. Cependant, cette RMEA va à l’encontre de la tendance, en résistant aux interruptions même à des températures aussi basses que l’azote liquide (-196°C).

Les Kink Bands sont un alliage métallique composé de niobium, de tantale, de titane et d'hafnium.

Cette carte montre les bandes de réseau formées près du fond de fissure lors d'un test de propagation de fissure (de gauche à droite) dans l'alliage à -196°C. Crédit : Laboratoire de Berkeley

Pour comprendre ce qui se passait à l'intérieur du métal exquis, le co-chercheur Andrew Minor et son équipe ont analysé les échantillons soumis à des contraintes, ainsi que des échantillons témoins non pliés et non fissurés, à l'aide d'un microscope électronique à balayage tridimensionnel (4D-STEM) et d'un microscope électronique à balayage ( STEM) au Centre national de microscopie électronique, qui fait partie de la fonderie moléculaire du Berkeley Lab.

Les données du microscope électronique ont révélé que la dureté inhabituelle de l'alliage provient d'un effet secondaire inattendu d'un défaut rare appelé bande pliée. Des bandes de nœuds se forment dans un cristal lorsqu'une force appliquée provoque l'effondrement soudain des segments du cristal sur eux-mêmes et leur courbure. La direction dans laquelle le cristal se courbe dans ces brins augmente la force ressentie par les dislocations, les rendant ainsi plus faciles à déplacer. Au niveau de la masse, ce phénomène provoque un ramollissement du matériau (ce qui signifie que moins de force doit être appliquée sur le matériau lors de sa déformation). L'équipe savait, grâce à des recherches antérieures, que des bandes de nœuds se formaient facilement dans le RMEA, mais ils ont émis l'hypothèse que l'effet adoucissant rendrait le matériau moins rigide en facilitant la propagation des fissures à travers le réseau. Mais en réalité, ce n’est pas le cas.

READ  Un pas vers la compréhension du potentiel de vie de la planète rouge

« Nous avons montré, pour la première fois, que dans le cas d'une fissure brutale entre des atomes, les bandes de torsion résistent réellement à la propagation des fissures en répartissant les dommages loin d'elles, empêchant ainsi la fracture et entraînant une ténacité inhabituellement élevée », a déclaré Cook.

N.-B.45Ta25T15Haute fréquence15 Les alliages devront subir des recherches plus fondamentales et des tests techniques avant de réaliser quelque chose comme une turbine à réaction ou EspaceX La tuyère de la fusée en est fabriquée, a déclaré Ritchie, car les ingénieurs en mécanique doivent vraiment comprendre en profondeur les performances de leurs matériaux avant de les utiliser dans le monde réel. Cependant, cette étude suggère que le métal a le potentiel pour construire les moteurs du futur.

Référence : « Les bandes pliées améliorent la résistance exceptionnelle à la rupture dans l'alliage réfractaire à entropie moyenne NbTaTiHf » par David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj , Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Deran Abelian et Robert O. Richie, 11 avril 2024, les sciences.
est ce que je: 10.1126/science.adn2428

Cette recherche a été menée par David H. Cook, Puneet Kumar et Madeleine I. Payne et Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zihao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor et Enrique. J. Lavernia, Deran Abelian et Robert O. Ritchie, des scientifiques du Berkeley Lab, de l'UC Berkeley, du Pacific Northwest National Laboratory et de l'UC Irvine, avec un financement du Bureau des sciences du ministère de l'Énergie. L'analyse expérimentale et informatique a été réalisée à la Fonderie Moléculaire et au Centre Informatique Scientifique National de Recherche Énergétique, deux installations utilisatrices du Bureau des Sciences du Département de l'Énergie.

Continue Reading

science

Psyché envoie toujours des données à la maison à des vitesses haut débit

Published

on

Psyché envoie toujours des données à la maison à des vitesses haut débit

Quand j’ai entendu parler de cela, j’ai ressenti un pincement au cœur. Au cours de la dernière année, j'ai utilisé un service haut débit 4G modeste et j'ai obtenu au mieux 20 Mbps, mais la mission Psyché de la NASA a quand même obtenu 23 Mbps sur une distance de 225 millions de kilomètres ! Tout cela est dû au modèle du système de transmission optique utilisé dans la sonde. Cela signifie qu'elle peut obtenir un taux de transfert de données jusqu'à 100 fois supérieur à celui d'une radio ordinaire.

La mission Pysche de la NASA est en passe d'explorer, sans surprise, l'astéroïde riche en métaux situé entre les orbites de Mars et Jupiter, appelé Psyché. La chose intéressante à propos de l’astéroïde est qu’il semble être le noyau riche en fer d’une planète non formée. Le vaisseau spatial transportait une large gamme d'instruments scientifiques pour explorer l'astéroïde, notamment un imageur, un spectromètre à rayons gamma et à neutrons, un magnétomètre et une plate-forme gravitationnelle en bande X.

Son voyage de deux ans a commencé le 13 octobre avec sa destination, un petit monde qui pourrait nous aider à percer certains des secrets de la formation de notre système solaire. La théorie selon laquelle Psyché est un noyau planétaire défaillant n'est pas confirmée, ce sera donc l'un des objectifs de sa première mission ; Était-ce simplement du métal non fondu ou était-ce un noyau ? Pour comprendre cela, il faut connaître son âge. En plus de l'origine, d'autres objectifs sont d'explorer la formation et sa topographie à la surface.

READ  Incorporé dans le génome des microbes - les scientifiques ont découvert plus de 30 000 virus "cachés"

L'astéroïde de Sotchi a été découvert en mars 1852 par l'astronome italien Annibale de Gasparis. Parce qu'il l'a découvert, il a été autorisé à lui donner un nom et a choisi Psyché, d'après la déesse grecque de l'âme. Il tourne autour du soleil à une distance allant de 378 millions à 497 millions de kilomètres, et il lui faut environ 5 années terrestres pour terminer son cycle. En forme de pomme de terre, ou peut-être plus précisément classée comme « irrégulière », il s’agit en fait d’une petite forme ellipsoïde qui mesure 280 kilomètres de large dans sa partie la plus large et 232 kilomètres de long.

Illustration de l’astéroïde métallique Psyché. Crédit image : Peter Rubin/NASA/JPL-Caltech/Arizona State University

Le système de communication expérimental est peut-être plus intéressant que les cibles (même si j'ai hâte d'en apprendre davantage sur cet astéroïde fascinant). La technologie DSOC (Deep Space Optical Communications) nouvellement développée n’est pas la principale plate-forme de communication mais existe sous forme de prototype.

Le système optique, qui repose sur la technologie laser, a réussi à transmettre des données techniques sur une distance de 226 millions de kilomètres. Le plus impressionnant peut-être est que le vaisseau spatial a démontré qu'il est capable de transmettre à un débit de 267 mégabits par seconde (oui, vous avez bien lu, un peu plus d'un quart de gigabit par seconde !). L'incroyable vitesse de téléchargement a été atteinte le 11 décembre. L'année dernière, lorsqu'une connexion haut débit de 15 secondes a été établie, une vidéo haute définition a été envoyée sur Terre. Malheureusement, à mesure que le vaisseau spatial recule, sa capacité à transmettre des données diminuera. Cela reste cependant bien meilleur que les connexions sans fil classiques.

READ  ESA - Alex sur les rochers

Grâce à un puissant laser modulé, le laboratoire du télescope de communications optiques en Californie pourra envoyer des données à faible débit à Psyché. Pour recevoir les données, un récepteur de comptage de photons a été installé à l'observatoire Caltech Palomar pour capturer les informations envoyées par le vaisseau spatial. La communication a toujours été un défi majeur dans l’exploration spatiale, et même si nous ne pouvons pas réduire le temps de transit des données, nous pouvons améliorer la quantité de données envoyées à tout moment. Un grand pas en avant dans l’exploration spatiale.

source : La démonstration de communications optiques de la NASA transmet des données à plus de 140 millions de kilomètres

Continue Reading

Trending

Copyright © 2023