Connect with us

science

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Published

on

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Carte de la structure cristalline de l'alliage obtenue à partir de la diffraction par rétrodiffusion des électrons au microscope électronique à balayage. Chaque couleur représente une partie du cristal où la structure répétitive change d'orientation 3D. Crédit : Laboratoire de Berkeley

Des chercheurs ont découvert un minéral inhabituel Alliage Il ne se fissurera pas à des températures extrêmes en raison de la flexion ou de la flexion des cristaux de l'alliage au niveau atomique.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium a choqué les scientifiques des matériaux par sa résistance et sa ténacité étonnantes à des températures extrêmement chaudes et froides, une combinaison de propriétés qui semblaient jusqu'à présent presque impossibles à obtenir. Dans ce contexte, la résistance est définie comme la quantité de force qu'un matériau peut supporter avant d'être déformé de manière permanente par rapport à sa forme d'origine, et la ténacité est sa résistance à la rupture (fissuration). La résilience de l'alliage à la flexion et à la rupture dans un large éventail de conditions pourrait ouvrir la porte à une nouvelle classe de matériaux pour les moteurs de nouvelle génération, capables de fonctionner plus efficacement.

L'équipe, dirigée par Robert Ritchie du Lawrence Berkeley National Laboratory (Berkeley Laboratory) et de l'UC Berkeley, en collaboration avec des groupes dirigés par les professeurs Deran Apelian de l'UC Irvine et Enrique Lavernia de la Texas A&M University, a découvert puis découvert les propriétés étonnantes de l'alliage. . Comment résultent-ils des interactions dans la structure atomique ? Leurs travaux ont été décrits dans une étude récemment publiée dans la revue les sciences.

« L'efficacité de la conversion de la chaleur en électricité ou en propulsion est déterminée par la température à laquelle le carburant est brûlé : plus il est chaud, mieux c'est. Cependant, la température de fonctionnement est limitée par les matériaux structurels auxquels il doit résister. » Nous avons épuisé la possibilité d’améliorer les matériaux que nous utilisons actuellement à haute température, et il existe un grand besoin de nouveaux matériaux métalliques. C’est ce que promet cet alliage.

L'alliage dans cette étude appartient à une nouvelle classe de métaux connus sous le nom d'alliages résistants aux températures élevées ou moyennes (RHEA/RMEA). La plupart des métaux que nous voyons dans les applications commerciales ou industrielles sont des alliages constitués d'un métal parent mélangé à de petites quantités d'autres éléments, mais les RHEA et les RMEA sont fabriqués en mélangeant des quantités presque égales d'éléments métalliques avec des températures de fusion très élevées, ce qui leur confère des propriétés encore uniques. . Les scientifiques le découvrent. Le groupe de Ritchie étudie ces alliages depuis plusieurs années en raison de leur potentiel pour les applications à haute température.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium

Cette carte de structure du matériau montre des bandes de réseau qui se forment près du fond de fissure lorsque les fissures se propagent (de gauche à droite) dans l'alliage à 25°C, température ambiante. Réalisé à l'aide d'un détecteur de diffraction de rétrodiffusion d'électrons dans un microscope électronique à balayage. Crédit : Laboratoire de Berkeley

« Notre équipe a déjà effectué des travaux sur les RHEA et les RMEA et a découvert que ces matériaux sont très résistants, mais ont généralement une très faible ténacité à la rupture, c'est pourquoi nous avons été choqués lorsque cet alliage a montré une ténacité exceptionnellement élevée », a déclaré le co-auteur. Puneet Kumar, chercheur postdoctoral du groupe.

READ  Lundi, SpaceX se réjouit de lancer les missions Starlink et Transporter-8

Selon Cook, la plupart des RMEA ont une ténacité inférieure à 10 MPa, ce qui en fait l'un des métaux les plus fragiles de tous. Les meilleurs aciers cryogéniques, spécialement conçus pour résister à la casse, sont environ 20 fois plus résistants que ces matériaux. Cependant, le niobium, le tantale, le titane et le hafnium (Nb45Ta25T15Haute fréquence15) L'alliage RMEA était capable de surpasser même l'acier cryogénique, enregistrant des performances plus de 25 fois supérieures à celles du RMEA typique à température ambiante.

Mais les moteurs ne fonctionnent pas à température ambiante. Les scientifiques ont évalué la résistance et la durabilité à cinq températures totales : -196°C (température de l'azote liquide), 25°C (température ambiante), 800°C, 950°C et 1 200°C. Cette dernière température est environ 1/5 de la température de la surface du Soleil.

L’équipe a découvert que l’alliage présente sa plus grande résistance au froid et s’affaiblit légèrement à mesure que la température augmente, mais présente toujours des chiffres impressionnants sur une large plage. La ténacité à la rupture, calculée à partir de la force nécessaire pour propager une fissure existante dans un matériau, était élevée à toutes les températures.

Révéler les arrangements atomiques

Presque tous les alliages métalliques sont cristallins, ce qui signifie que les atomes contenus dans le matériau sont disposés en unités répétitives. Cependant, aucun cristal n’est parfait, ils contiennent tous des imperfections. Le défaut le plus important qui se déplace est appelé dislocation, c'est-à-dire un plan imparfait d'atomes dans le cristal. Lorsqu’une force est appliquée au métal, plusieurs dislocations se déplacent pour s’adapter au changement de forme.

READ  Les astronomes présentent un nouveau modèle pour la formation de planètes « flottantes » récemment découvertes

Par exemple, lorsque vous pliez un trombone en aluminium, le mouvement des dislocations à l’intérieur du trombone s’adapte au changement de forme. Cependant, le mouvement des dislocations devient plus difficile à basse température et, par conséquent, de nombreux matériaux deviennent cassants à basse température car les dislocations ne peuvent pas bouger. C'est pourquoi la coque en acier du Titanic s'est brisée lorsqu'elle a heurté un iceberg. Les éléments à haute température de fusion et leurs alliages poussent cela à l'extrême, nombre d'entre eux restant cassants même jusqu'à 800°C. Cependant, cette RMEA va à l’encontre de la tendance, en résistant aux interruptions même à des températures aussi basses que l’azote liquide (-196°C).

Les Kink Bands sont un alliage métallique composé de niobium, de tantale, de titane et d'hafnium.

Cette carte montre les bandes de réseau formées près du fond de fissure lors d'un test de propagation de fissure (de gauche à droite) dans l'alliage à -196°C. Crédit : Laboratoire de Berkeley

Pour comprendre ce qui se passait à l'intérieur du métal exquis, le co-chercheur Andrew Minor et son équipe ont analysé les échantillons soumis à des contraintes, ainsi que des échantillons témoins non pliés et non fissurés, à l'aide d'un microscope électronique à balayage tridimensionnel (4D-STEM) et d'un microscope électronique à balayage ( STEM) au Centre national de microscopie électronique, qui fait partie de la fonderie moléculaire du Berkeley Lab.

Les données du microscope électronique ont révélé que la dureté inhabituelle de l'alliage provient d'un effet secondaire inattendu d'un défaut rare appelé bande pliée. Des bandes de nœuds se forment dans un cristal lorsqu'une force appliquée provoque l'effondrement soudain des segments du cristal sur eux-mêmes et leur courbure. La direction dans laquelle le cristal se courbe dans ces brins augmente la force ressentie par les dislocations, les rendant ainsi plus faciles à déplacer. Au niveau de la masse, ce phénomène provoque un ramollissement du matériau (ce qui signifie que moins de force doit être appliquée sur le matériau lors de sa déformation). L'équipe savait, grâce à des recherches antérieures, que des bandes de nœuds se formaient facilement dans le RMEA, mais ils ont émis l'hypothèse que l'effet adoucissant rendrait le matériau moins rigide en facilitant la propagation des fissures à travers le réseau. Mais en réalité, ce n’est pas le cas.

READ  Une puissante éruption solaire de classe X sortant du Soleil - Capturée par l'Observatoire de la dynamique solaire de la NASA

« Nous avons montré, pour la première fois, que dans le cas d'une fissure brutale entre des atomes, les bandes de torsion résistent réellement à la propagation des fissures en répartissant les dommages loin d'elles, empêchant ainsi la fracture et entraînant une ténacité inhabituellement élevée », a déclaré Cook.

N.-B.45Ta25T15Haute fréquence15 Les alliages devront subir des recherches plus fondamentales et des tests techniques avant de réaliser quelque chose comme une turbine à réaction ou EspaceX La tuyère de la fusée en est fabriquée, a déclaré Ritchie, car les ingénieurs en mécanique doivent vraiment comprendre en profondeur les performances de leurs matériaux avant de les utiliser dans le monde réel. Cependant, cette étude suggère que le métal a le potentiel pour construire les moteurs du futur.

Référence : « Les bandes pliées améliorent la résistance exceptionnelle à la rupture dans l'alliage réfractaire à entropie moyenne NbTaTiHf » par David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj , Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Deran Abelian et Robert O. Richie, 11 avril 2024, les sciences.
est ce que je: 10.1126/science.adn2428

Cette recherche a été menée par David H. Cook, Puneet Kumar et Madeleine I. Payne et Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zihao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor et Enrique. J. Lavernia, Deran Abelian et Robert O. Ritchie, des scientifiques du Berkeley Lab, de l'UC Berkeley, du Pacific Northwest National Laboratory et de l'UC Irvine, avec un financement du Bureau des sciences du ministère de l'Énergie. L'analyse expérimentale et informatique a été réalisée à la Fonderie Moléculaire et au Centre Informatique Scientifique National de Recherche Énergétique, deux installations utilisatrices du Bureau des Sciences du Département de l'Énergie.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Published

on

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Une autre énorme éruption solaire a explosé quelques jours après la dernière éruption, provoquant des expositions époustouflantes d’aurores boréales à travers le Royaume-Uni et les États-Unis – mais ne vous attendez pas à une autre exposition époustouflante.

Cette dernière éruption est plus puissante que l’explosion du week-end et constitue la plus importante depuis près de deux décennies.

Cette éruption est beaucoup plus grande, mais la placer face au soleil en réduit l’effet.Crédit : NOAA
Une tempête solaire majeure au cours du week-end a donné lieu à des expositions éblouissantes d’aurores boréales à travers le Royaume-Uni et les États-Unis.Crédit : PA

De graves tempêtes solaires peuvent perturber les satellites GPS, les réseaux électriques, les appareils électroniques, y compris les téléphones portables, et Internet.

Le résultat le moins destructeur et le plus délicieux est l’éblouissante aurore boréale verte et violette, connue sous le nom d’aurores boréales.

Mais cette nouvelle éruption ne devrait pas provoquer de chaos, et il est peu probable que de la lumière apparaisse non plus.

Le pire des cas est une perte temporaire des signaux radio, selon la National Oceanic and Atmospheric Administration (NOAA).

La Terre a échappé à la ligne de mire lorsque l’éruption a éclaté sur une partie du Soleil en orbite loin de nous.

L’Administration nationale des océans et de l’atmosphère (NOAA) a émis une alerte indiquant que le soleil n’est « pas encore en plein soleil ».

La dernière fusée éclairante a été classée par les experts comme X8.7, plus forte que la fusée X2.2 du week-end.

Il s’agit du plus grand cycle solaire actuel de 11 ans.

READ  Lundi, SpaceX se réjouit de lancer les missions Starlink et Transporter-8

« Compte tenu de son emplacement, toute éjection de masse coronale associée à cette éruption n’aurait probablement aucun effet géomagnétique sur Terre », a expliqué la NOAA.

Mais Brian Brasher, de la National Oceanic and Atmospheric Administration (NOAA), a déclaré à l’AP que la lueur pourrait être plus forte lorsque les scientifiques collectent des données provenant d’autres sources.

Les Britanniques de tout le pays ont pu profiter d’une vue éblouissante sur les aurores boréales grâce à la tempête solaire.

Pendant ce temps, le Met Office britannique a déclaré : « Toutes les vues seront probablement limitées aux hautes latitudes » avec « seulement une faible chance de s’étendre aussi loin au sud que l’Écosse ou des latitudes similaires ».

Le Soleil approche du sommet de son cycle de 11 ans, créant de puissantes explosions d’énergie et de matière qui sont libérées très rapidement et pourraient heurter le champ magnétique terrestre.

Aucune perturbation majeure n’est attendue cette fois

Qu’est-ce que les aurores boréales ?

Les aurores boréales se produisent lorsque des particules chargées entrent en collision avec des gaz présents dans l’atmosphère terrestre autour des pôles magnétiques.

Dans l’hémisphère Nord, la majeure partie de cette activité se produit dans une bande connue sous le nom d’ovale d’aurore, couvrant des latitudes comprises entre 60 et 75 degrés.

Lorsque l’activité est forte, elle s’étend pour couvrir une zone plus vaste – ce qui explique pourquoi les expositions peuvent parfois être vues aussi loin au sud que le Royaume-Uni.

La visibilité des aurores boréales a augmenté vendredi en raison d’une « forte » tempête géomagnétique, selon l’Administration nationale américaine des océans et de l’atmosphère (NOAA).

READ  Le télescope Webb révèle les couleurs d'Earendel, l'étoile la plus lointaine jamais découverte

Ce phénomène apparaît sous la forme de magnifiques bandes de lumière vertes et violettes dansantes, qui captivent les gens depuis des milliers d’années.

Continue Reading

science

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Published

on

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Les scientifiques de la Dublin City University (DCU) estiment que notre planète a 4,5 milliards d’années et que les premiers signes de vie ici – créés par des organismes microscopiques – se trouvaient dans des roches anciennes, il y a 3,7 milliards d’années.

Le professeur Sean Jordan, de la DCU, a déclaré : « Le problème avec les estimations des premières formes de vie est que les caractéristiques créées par ces premiers organismes, qui ont laissé des empreintes physiques dans ces roches anciennes, pourraient, je pense, avoir été créées par un autre processus qui ne le fait pas. pas « . Cela n’implique aucune forme de vie.

Le Dr Jordan, dont les recherches viennent d’être publiées dans la revue scientifique, a ajouté : « Les recherches que nous menons à la DCU pourraient fournir une bien meilleure façon de répondre à cette question importante avec plus de certitude. » Communications Terre et Environnement.

La NASA prévoit une mission de retour d’échantillons sur Mars dans les années 2030.

Cela impliquera de renvoyer des échantillons de roches et de poussières sur Terre pour analyse. À ce stade, il sera crucial pour la science de disposer d’une méthode éprouvée et fiable pour identifier les premiers signes de vie dans les spécimens anciens.

Le Dr Jordan a déclaré : « Nous devons de toute urgence développer une méthode scientifique éprouvée pour identifier les premiers signes de vie dans les roches anciennes, et c’était l’objet de cette nouvelle recherche. » « Actuellement, lorsque nous observons de petites structures microscopiques dans des roches anciennes, nous ne pouvons pas être sûrs si elles ont été formées par des organismes vivants primitifs ou par un processus non vivant.

READ  Pourquoi les lumières de Noël sont-elles toujours emmêlées ?

« Ce processus non vivant peut être le signe de structures chimiques qui conduisent à l’origine de la vie.

« Je développe des méthodes qui nous permettront d’étudier exactement cela. C’est important car cela permettra aux scientifiques d’identifier les premiers signes de vie sur Terre et peut-être sur d’autres planètes. »

Mars a déjà été décrite comme un désert aride, où les températures descendent jusqu’à -153°C en hiver et où l’atmosphère ne représente que 1 % de la densité terrestre, composée principalement de dioxyde de carbone.

Au cours du premier milliard d’années, les océans et les mers étaient protégés par une épaisse couche d’air.

Cependant, son champ magnétique s’est fermé, permettant au vent solaire d’emporter l’atmosphère et l’eau et de disparaître dans l’espace.

Continue Reading

science

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Published

on

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

Relecture


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

× Fermer


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

L’interaction de matériaux solides avec des impulsions laser très courtes et de haute intensité a permis des avancées technologiques majeures au cours du dernier demi-siècle. D’une part, l’ablation laser de matériaux solides permet une fabrication précise et une miniaturisation d’éléments dans des dispositifs médicaux ou de communication. D’un autre côté, les faisceaux d’ions accélérés provenant de matériaux solides utilisant des lasers intenses pourraient ouvrir la voie à de nouvelles opportunités de traitement du cancer grâce à la protonthérapie laser, à la recherche sur l’énergie de fusion et à l’analyse du patrimoine culturel.

Cependant, il reste encore des défis à relever pour pousser les performances d’ablation laser à l’échelle nanométrique et parvenir à une accélération ionique pilotée par laser dans l’industrie et à des fins médicales.

Lors de l’interaction d’une impulsion laser ultracourte avec une cible solide, cette dernière évolue vers un état ionisé ou plasma dans un laps de temps très court (moins d’une picoseconde). [ps]), où se produisent de nombreux processus physiques complexes et couplés, alors que l’interaction entre eux n’est pas encore entièrement comprise.

En raison du développement de la cible ultrarapide, l’étape initiale de la réaction, c’est-à-dire la formation du plasma, est difficile à atteindre expérimentalement. Par conséquent, cette transition ultrarapide du solide au plasma, qui définit les conditions initiales des processus ultérieurs tels que l’ablation ou l’accélération des particules, a jusqu’à présent été abordée par des hypothèses approximatives dans la plupart des modèles numériques décrivant une telle interaction.

En neuf papier Publié dans Lumière : science et applications, une équipe internationale de scientifiques, dont Yasmina Azzammoum et Malti C. Kaluza de l’Institut Helmholtz de Jena et de l’Université Friedrich Schiller de Jena, Allemagne, Stefan Skupin de l’Institut Lumière-Matier, France, et Guillaume Duchateau de la Commission de l’énergie. atomique (CEA-Cesta), France et ses co-auteurs ont franchi une étape importante en élucidant la transformation ultrarapide induite par laser du solide au plasma et en fournissant une compréhension approfondie de l’interaction des processus sous-jacents.

Il offre une technologie avancée d’inspection optique mono-coup qui permet une vue complète de la dynamique de la cible, depuis les solides froids passant par la phase d’ionisation jusqu’aux plasmas extrêmement denses. Ceci est réalisé en utilisant une impulsion de sonde laser avec un spectre optique à large bande qui éclaire l’interaction de l’impulsion de pompe avec des flocons de carbone de type diamant d’une épaisseur nanométrique. Différentes couleurs de l’impulsion de la sonde arrivent à différents moments d’interaction en raison du gazouillis temporel.

Par conséquent, l’évolution de l’état cible codé dans la lumière de sonde transmise peut être capturée avec une seule impulsion de sonde. Cette technique d’inspection ponctuelle est avantageuse par rapport aux méthodes pompe-sonde traditionnelles, où le processus étudié doit être reproduit à l’identique par la pompe pour chaque délai de sonde. Ceci est particulièrement important lors de l’utilisation de systèmes laser haute puissance, qui souffrent souvent de fortes fluctuations entre les impulsions.

En outre, les scientifiques ont démontré que pour l’interprétation correcte des profils de transport de sonde mesurés, une description précise de la transition précoce solide-plasma est cruciale. Un modèle de réaction en deux étapes est développé, la première étape considérant la dynamique d’ionisation de la cible à l’état solide et la deuxième étape considérant la cible à l’état plasma.

Une évolution détaillée de l’état cible à haute résolution temporelle et spatiale (respectivement sub-ps et nm) est fournie, ainsi qu’un aperçu sans précédent de l’interaction entre les processus fondamentaux tels que la dynamique d’ionisation, les collisions de particules et l’expansion hydrodynamique du plasma.

Les résultats et l’interprétation de cette nouvelle technique de criblage devraient contribuer à une compréhension plus approfondie de la dynamique des différentes cibles et à une meilleure compréhension des processus physiques sous-jacents. Ces avancées contribueront probablement à aller au-delà des méthodes traditionnelles de traitement des matériaux par laser ultrarapide et à rendre les technologies ioniques accélérées par laser utilisables dans des applications sociétales.

Plus d’information:
Yasmina Azzam et al., Examen optique des transitions de plasma solide à plasma hyper-densité induites par des lasers ultrarapides, Lumière : science et applications (2024). est ce que je: 10.1038/s41377-024-01444-j

Informations sur les magazines :
Lumière : science et applications


READ  Explosion - La sonde Jupiter entame son voyage de huit ans pour explorer les lunes océaniques de la planète
Continue Reading

Trending

Copyright © 2023