Connect with us

science

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Published

on

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Carte de la structure cristalline de l'alliage obtenue à partir de la diffraction par rétrodiffusion des électrons au microscope électronique à balayage. Chaque couleur représente une partie du cristal où la structure répétitive change d'orientation 3D. Crédit : Laboratoire de Berkeley

Des chercheurs ont découvert un minéral inhabituel Alliage Il ne se fissurera pas à des températures extrêmes en raison de la flexion ou de la flexion des cristaux de l'alliage au niveau atomique.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium a choqué les scientifiques des matériaux par sa résistance et sa ténacité étonnantes à des températures extrêmement chaudes et froides, une combinaison de propriétés qui semblaient jusqu'à présent presque impossibles à obtenir. Dans ce contexte, la résistance est définie comme la quantité de force qu'un matériau peut supporter avant d'être déformé de manière permanente par rapport à sa forme d'origine, et la ténacité est sa résistance à la rupture (fissuration). La résilience de l'alliage à la flexion et à la rupture dans un large éventail de conditions pourrait ouvrir la porte à une nouvelle classe de matériaux pour les moteurs de nouvelle génération, capables de fonctionner plus efficacement.

L'équipe, dirigée par Robert Ritchie du Lawrence Berkeley National Laboratory (Berkeley Laboratory) et de l'UC Berkeley, en collaboration avec des groupes dirigés par les professeurs Deran Apelian de l'UC Irvine et Enrique Lavernia de la Texas A&M University, a découvert puis découvert les propriétés étonnantes de l'alliage. . Comment résultent-ils des interactions dans la structure atomique ? Leurs travaux ont été décrits dans une étude récemment publiée dans la revue les sciences.

« L'efficacité de la conversion de la chaleur en électricité ou en propulsion est déterminée par la température à laquelle le carburant est brûlé : plus il est chaud, mieux c'est. Cependant, la température de fonctionnement est limitée par les matériaux structurels auxquels il doit résister. » Nous avons épuisé la possibilité d’améliorer les matériaux que nous utilisons actuellement à haute température, et il existe un grand besoin de nouveaux matériaux métalliques. C’est ce que promet cet alliage.

L'alliage dans cette étude appartient à une nouvelle classe de métaux connus sous le nom d'alliages résistants aux températures élevées ou moyennes (RHEA/RMEA). La plupart des métaux que nous voyons dans les applications commerciales ou industrielles sont des alliages constitués d'un métal parent mélangé à de petites quantités d'autres éléments, mais les RHEA et les RMEA sont fabriqués en mélangeant des quantités presque égales d'éléments métalliques avec des températures de fusion très élevées, ce qui leur confère des propriétés encore uniques. . Les scientifiques le découvrent. Le groupe de Ritchie étudie ces alliages depuis plusieurs années en raison de leur potentiel pour les applications à haute température.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium

Cette carte de structure du matériau montre des bandes de réseau qui se forment près du fond de fissure lorsque les fissures se propagent (de gauche à droite) dans l'alliage à 25°C, température ambiante. Réalisé à l'aide d'un détecteur de diffraction de rétrodiffusion d'électrons dans un microscope électronique à balayage. Crédit : Laboratoire de Berkeley

« Notre équipe a déjà effectué des travaux sur les RHEA et les RMEA et a découvert que ces matériaux sont très résistants, mais ont généralement une très faible ténacité à la rupture, c'est pourquoi nous avons été choqués lorsque cet alliage a montré une ténacité exceptionnellement élevée », a déclaré le co-auteur. Puneet Kumar, chercheur postdoctoral du groupe.

READ  Modèle de champs scalaires cinématiquement couplés et de tensions cosmiques Avis mensuels de la Royal Astronomical Society

Selon Cook, la plupart des RMEA ont une ténacité inférieure à 10 MPa, ce qui en fait l'un des métaux les plus fragiles de tous. Les meilleurs aciers cryogéniques, spécialement conçus pour résister à la casse, sont environ 20 fois plus résistants que ces matériaux. Cependant, le niobium, le tantale, le titane et le hafnium (Nb45Ta25T15Haute fréquence15) L'alliage RMEA était capable de surpasser même l'acier cryogénique, enregistrant des performances plus de 25 fois supérieures à celles du RMEA typique à température ambiante.

Mais les moteurs ne fonctionnent pas à température ambiante. Les scientifiques ont évalué la résistance et la durabilité à cinq températures totales : -196°C (température de l'azote liquide), 25°C (température ambiante), 800°C, 950°C et 1 200°C. Cette dernière température est environ 1/5 de la température de la surface du Soleil.

L’équipe a découvert que l’alliage présente sa plus grande résistance au froid et s’affaiblit légèrement à mesure que la température augmente, mais présente toujours des chiffres impressionnants sur une large plage. La ténacité à la rupture, calculée à partir de la force nécessaire pour propager une fissure existante dans un matériau, était élevée à toutes les températures.

Révéler les arrangements atomiques

Presque tous les alliages métalliques sont cristallins, ce qui signifie que les atomes contenus dans le matériau sont disposés en unités répétitives. Cependant, aucun cristal n’est parfait, ils contiennent tous des imperfections. Le défaut le plus important qui se déplace est appelé dislocation, c'est-à-dire un plan imparfait d'atomes dans le cristal. Lorsqu’une force est appliquée au métal, plusieurs dislocations se déplacent pour s’adapter au changement de forme.

READ  La vidéo met en perspective jusqu'où la caméra James Webb peut voir

Par exemple, lorsque vous pliez un trombone en aluminium, le mouvement des dislocations à l’intérieur du trombone s’adapte au changement de forme. Cependant, le mouvement des dislocations devient plus difficile à basse température et, par conséquent, de nombreux matériaux deviennent cassants à basse température car les dislocations ne peuvent pas bouger. C'est pourquoi la coque en acier du Titanic s'est brisée lorsqu'elle a heurté un iceberg. Les éléments à haute température de fusion et leurs alliages poussent cela à l'extrême, nombre d'entre eux restant cassants même jusqu'à 800°C. Cependant, cette RMEA va à l’encontre de la tendance, en résistant aux interruptions même à des températures aussi basses que l’azote liquide (-196°C).

Les Kink Bands sont un alliage métallique composé de niobium, de tantale, de titane et d'hafnium.

Cette carte montre les bandes de réseau formées près du fond de fissure lors d'un test de propagation de fissure (de gauche à droite) dans l'alliage à -196°C. Crédit : Laboratoire de Berkeley

Pour comprendre ce qui se passait à l'intérieur du métal exquis, le co-chercheur Andrew Minor et son équipe ont analysé les échantillons soumis à des contraintes, ainsi que des échantillons témoins non pliés et non fissurés, à l'aide d'un microscope électronique à balayage tridimensionnel (4D-STEM) et d'un microscope électronique à balayage ( STEM) au Centre national de microscopie électronique, qui fait partie de la fonderie moléculaire du Berkeley Lab.

Les données du microscope électronique ont révélé que la dureté inhabituelle de l'alliage provient d'un effet secondaire inattendu d'un défaut rare appelé bande pliée. Des bandes de nœuds se forment dans un cristal lorsqu'une force appliquée provoque l'effondrement soudain des segments du cristal sur eux-mêmes et leur courbure. La direction dans laquelle le cristal se courbe dans ces brins augmente la force ressentie par les dislocations, les rendant ainsi plus faciles à déplacer. Au niveau de la masse, ce phénomène provoque un ramollissement du matériau (ce qui signifie que moins de force doit être appliquée sur le matériau lors de sa déformation). L'équipe savait, grâce à des recherches antérieures, que des bandes de nœuds se formaient facilement dans le RMEA, mais ils ont émis l'hypothèse que l'effet adoucissant rendrait le matériau moins rigide en facilitant la propagation des fissures à travers le réseau. Mais en réalité, ce n’est pas le cas.

READ  Sur cette planète extérieure, il pleut des pierres précieuses »Explorersweb

« Nous avons montré, pour la première fois, que dans le cas d'une fissure brutale entre des atomes, les bandes de torsion résistent réellement à la propagation des fissures en répartissant les dommages loin d'elles, empêchant ainsi la fracture et entraînant une ténacité inhabituellement élevée », a déclaré Cook.

N.-B.45Ta25T15Haute fréquence15 Les alliages devront subir des recherches plus fondamentales et des tests techniques avant de réaliser quelque chose comme une turbine à réaction ou EspaceX La tuyère de la fusée en est fabriquée, a déclaré Ritchie, car les ingénieurs en mécanique doivent vraiment comprendre en profondeur les performances de leurs matériaux avant de les utiliser dans le monde réel. Cependant, cette étude suggère que le métal a le potentiel pour construire les moteurs du futur.

Référence : « Les bandes pliées améliorent la résistance exceptionnelle à la rupture dans l'alliage réfractaire à entropie moyenne NbTaTiHf » par David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj , Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Deran Abelian et Robert O. Richie, 11 avril 2024, les sciences.
est ce que je: 10.1126/science.adn2428

Cette recherche a été menée par David H. Cook, Puneet Kumar et Madeleine I. Payne et Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zihao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor et Enrique. J. Lavernia, Deran Abelian et Robert O. Ritchie, des scientifiques du Berkeley Lab, de l'UC Berkeley, du Pacific Northwest National Laboratory et de l'UC Irvine, avec un financement du Bureau des sciences du ministère de l'Énergie. L'analyse expérimentale et informatique a été réalisée à la Fonderie Moléculaire et au Centre Informatique Scientifique National de Recherche Énergétique, deux installations utilisatrices du Bureau des Sciences du Département de l'Énergie.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La découverte de gènes pourrait conduire à un atome flexible et « désordonné »

Published

on

La découverte de gènes pourrait conduire à un atome flexible et « désordonné »



Les chercheurs ont identifié un gène largement présent dans les plantes comme principal transporteur d’une hormone qui affecte la taille du maïs.

Cette découverte fournit aux sélectionneurs de plantes un nouvel outil pour développer des variétés naines souhaitables qui peuvent améliorer la résilience et la rentabilité des cultures.

Une équipe de scientifiques a passé des années à déterminer les fonctions du gène ZmPILS6. Aujourd’hui, ils sont en mesure de le décrire comme un facteur important de la taille et de la structure des plantes, et comme un transporteur de l’hormone auxine qui aide à contrôler la croissance des racines souterraines et des pousses, ou tiges, au-dessus du sol.

Leurs conclusions sont publiées dans Actes de l’Académie nationale des sciences.

« La particularité de l’ère scientifique actuelle est que nous disposons de toutes ces données génétiques de haute qualité, que ce soit sur le maïs, sur les humains ou sur d’autres organismes, et que nous avons désormais pour tâche de découvrir ce que font réellement les gènes », explique Dior-Kelly. . est professeur adjoint de génétique, de développement et de biologie cellulaire à l’Iowa State University, qui a dirigé l’équipe de recherche.

Le groupe a utilisé le « criblage génétique inverse » (du gène au trait exprimé dans la plante), ainsi que d’autres techniques, pour retracer le rôle des gènes dans l’évolution du maïs. Les écrans inversés nécessitent plusieurs saisons de croissance et ne fonctionnent pas toujours, selon Kelly. Il a fallu sept ans à son équipe pour caractériser précisément ZmPILS6 et vérifier qu’il régule la croissance des plantes.

READ  Les scientifiques ont peut-être enfin compris pourquoi l'ATP est si capable de toute vie sur Terre

Lorsque les plantes modifiées et transformées étaient « supprimées », leur absence supprimait la formation de racines latérales et la hauteur de la plante. La recherche a conduit à un brevet provisoire pour son utilisation potentielle dans des programmes de sélection visant à produire du maïs de petite taille encore très productif.

«Je pense que c’est comme un maïs lutin», dit Kelly. « Il suscite beaucoup d’intérêt pour plusieurs raisons, notamment sa faible consommation d’eau et de nutriments et sa capacité à résister aux vents violents. »

En étudiant ZmPILS6 dans le maïs, les chercheurs sont arrivés à une autre découverte étrange : le gène semblait avoir des effets opposés sur la croissance des plantes par rapport au gène identique du maïs. ArabidopsisC’est une plante qui sert souvent de modèle pour la recherche.

« C’était complètement inattendu », dit Kelly. « Cela montre que les protéines végétales, qui ont évolué dans des contextes différents, peuvent se comporter différemment. Cela souligne la nécessité d’étudier les gènes directement au sein des principales cultures d’intérêt, plutôt que de penser que nous les comprenons en fonction de leur fonctionnement dans d’autres plantes. »

Kelly décrit la nouvelle recherche comme une recherche fondamentale « fondamentale » pour comprendre le gène qui influence de nombreux traits de développement complexes, qui a été préservé par l’évolution de nombreuses plantes, des algues au maïs.

« C’est également « transformateur », dans la mesure où il est lié aux ressources génétiques qui peuvent être utilisées pour améliorer les programmes de sélection », dit-elle. «Cela ouvre des questions et des aspects de recherche complètement nouveaux pour mon laboratoire.»

READ  Modèle de champs scalaires cinématiquement couplés et de tensions cosmiques Avis mensuels de la Royal Astronomical Society

Co-auteurs supplémentaires de l’Iowa ; Université de Duke; et Université de Californie, Riverside.

L’Institut national de l’alimentation et de l’agriculture de l’USDA et le financement de démarrage de l’USDA du Collège d’agriculture et des sciences de la vie de l’Université d’État de l’Iowa ont financé les travaux.

source: Université d’État de l’Iowa

Continue Reading

science

Un nouveau modèle 3D montre comment les implants neuronaux soulagent la douleur chronique

Published

on

Un nouveau modèle 3D montre comment les implants neuronaux soulagent la douleur chronique

Modèle 3D développé par Université de Virginie occidentale Les neuroscientifiques montrent comment les stimulateurs implantables – du même type que ceux utilisés pour traiter la douleur chronique – peuvent cibler les neurones qui contrôlent des muscles spécifiques pour assurer la rééducation des personnes souffrant de troubles neurologiques tels qu’un accident vasculaire cérébral ou une lésion de la moelle épinière.

le StadeY compris le modèle, il a été publié dans la revue Nature Communications Biology.

Le dispositif, implanté sur ou à proximité de la moelle épinière, fonctionne en délivrant un signal électrique via un fil fin. Pour traiter la paralysie, la stimulation cible des parties spécifiques de la moelle épinière pour aider à restaurer la fonction musculaire et le mouvement. Cependant, l’efficacité du dispositif a été limitée par une compréhension insuffisante de l’emplacement des motoneurones qui se connectent à des muscles spécifiques dans la moelle épinière.

« Si nous voulons vraiment maximiser l’utilité de ces implants, nous voulons pouvoir sélectionner des motoneurones spécifiques qui activeront des muscles spécifiques et aideront à bouger de la bonne manière et au bon moment », a-t-il déclaré. Valéria Gritsenkoprofesseur agrégé à École de médecine WVUSections Performance humaine – Physiothérapie, Neurologie Et le Institut de neurosciences Rockefeller. « Les scientifiques veulent utiliser un modèle pour déterminer où implanter ce système. »

Dans le cadre de l’étude, Gritsenko a reçu une subvention de 600 000 $ sur trois ans du ministère américain de la Défense pour diriger une équipe visant à construire des modèles plus avancés du système neuromusculaire.

Grâce à d’autres études et tests, les chercheurs espèrent mieux comprendre dans quelle mesure ces appareils peuvent améliorer la fonction musculaire.

Pour mener l’étude, les chercheurs ont d’abord créé un modèle 3D de l’emplacement des motoneurones dans la moelle épinière d’un macaque – un singe de l’Ancien Monde – et l’ont comparé aux connaissances actuelles sur la moelle épinière humaine. Ils ont également créé des modèles 3D de l’anatomie musculo-squelettique d’un singe macaque et du membre supérieur droit d’un humain et ont comparé ces modèles.

« Nous avons étudié les différences et les changements dans la longueur des muscles dans différentes postures, à la fois chez le modèle humain et chez le singe », a-t-il déclaré. Rachel Taitano, doctorant en médecine et neurosciences de Fairfax, en Virginie, et auteur principal de l’étude. « Le modèle musculo-squelettique du singe montre que la biomécanique est similaire à celle des humains, même si l’espèce présente des différences dans les muscles qu’elle utilise, les muscles qu’elle possède et leurs différentes orientations et fonctions. »

L’étude montre une correspondance étroite dans la distribution ou la profondeur des groupes de motoneurones le long de la moelle épinière chez les macaques et les humains. Ces résultats permettront aux scientifiques d’obtenir une précision dans la fourniture du traitement.

« Certaines populations de motoneurones sont plus profondes dans la moelle épinière et d’autres sont plus proches de la surface », a expliqué Gritsenko. « Ce modèle nous permet d’examiner plus en profondeur l’endroit où les populations de motoneurones pourraient être les plus proches de la surface. C’est là que vous souhaitez stimuler l’activation de ces muscles. »

READ  Le télescope Hubble de la NASA aide les scientifiques à résoudre le mystère des galaxies mortes

« Connaître l’organisation vertébrale des assemblages de motoneurones – des groupes de cellules qui se connectent à un seul muscle – pourrait révéler quelque chose de fascinant », a expliqué Gritsenko, qui a été le chercheur principal. « Notre système musculo-squelettique complexe a évolué au fil du temps pour permettre une large gamme de résultats. de mouvements que nous voyons chez tous les « primates, y compris nous, les humains. L’équipe a découvert que nos moelles épinières contiennent des « cartes » intégrées qui reflètent cette fonction complexe. Cette « carte » aide à simplifier le contrôle de nos corps complexes via la moelle épinière.  » .

Un autre collègue sur le projet, Sergueï Yakovenkoprofesseur agrégé à la faculté de médecine de l’Université de Virginie-Occidentale, départements de performance humaine et de recherche. Exercice physiologiqueLe Département de Neurosciences et le RNI ont mené des études similaires sur l’anatomie de la moelle épinière chez les quadrupèdes. Les nouvelles découvertes montrent à quel point l’anatomie de la moelle épinière est conservée chez les animaux et à quel point elle reflète les actions musculaires.

Les résultats d’une étude scientifique appliquée qui peuvent être utilisés au bénéfice des patients en milieu clinique sont ce qui, selon Taitano, l’a attirée vers le projet.

« Je pense que nous pouvons obtenir beaucoup d’informations à partir d’études non chirurgicales », a déclaré Taitano, diplômé en génie biomédical. « Maintenant que nous pouvons appliquer ces résultats à l’échelle millimétrique et nanométrique, nous pouvons créer des dispositifs permettant d’appliquer ce que nous voyons dans un modèle comme celui-ci. »

Une fois le projet terminé, Taitano passera à la partie médecine de son programme cet été.

READ  La NASA présente la fusée lunaire SLS terminée et le télescope Webb - Spaceflight Now

« Les antécédents de Rachel ont été très utiles au succès de l’étude », a déclaré Gritsenko. « J’aimerais certainement voir davantage de ce type de collaboration interdisciplinaire avec des étudiants diplômés travaillant sur des projets avec des collègues des départements de médecine et d’ingénierie.

En plus de la subvention du ministère de la Défense, des scientifiques de deux autres universités ont exprimé leur intérêt pour l’utilisation du modèle pour explorer la manière d’améliorer la technologie catalytique, a déclaré Gritsenko. Elle prévoit également de collaborer avec un chercheur principal d’une autre université pour valider les résultats de l’étude sur des modèles animaux.

« Nous voulons faire un test de stimulation musculaire basé sur les prédictions du modèle et voir si nous obtenons les résultats escomptés », a-t-elle déclaré. « Nous pouvons essayer cela d’abord avec des singes, puis, si cela fonctionne, nous pouvons l’essayer chez l’homme pour vérifier davantage qu’il s’agit d’un bon modèle pour guider ces interventions chirurgicales. »

référence: Taitano RI, Yakovenko S, Gritsenko V. L’anatomie musculaire se reflète dans l’organisation spatiale des groupes de motoneurones spinaux. Commune Byul. 2024;7(1):1-11. est ce que je: 10.1038/s42003-023-05742-s

Cet article a été republié ci-dessous Matiéres. Remarque : Le matériel peut avoir été modifié en termes de longueur et de contenu. Pour plus d’informations, veuillez contacter la source susmentionnée. Vous pouvez accéder à notre politique de communiqués de presse ici.

Continue Reading

science

Découverte de plus de 400 empreintes de dinosaures du Crétacé

Published

on

Découverte de plus de 400 empreintes de dinosaures du Crétacé

Plus de 400 empreintes de dinosaures datant du Crétacé inférieur ont été découvertes dans la préfecture autonome de Zhuxiongyi, dans la province chinoise du Yunnan (sud-ouest), ont indiqué des chercheurs.

Les fossiles ont été trouvés dans les montagnes de la ville de Konglongshan, dans la ville de Lufeng. Wang Tao, directeur du Centre de recherche et de préservation des fossiles de dinosaures à Lufeng, a déclaré que l’identification locale indiquait que les couches rocheuses contenant des empreintes de dinosaures remontaient à environ 120 millions d’années.

Wang a déclaré que les fossiles peuvent être classés en trois types : de grandes empreintes qui ressemblent à celles de sauropodes, tels que Diplodocus ; Des empreintes ressemblant à celles des théropodes, comme les tyrannosaures ; Les empreintes présentent des dépressions visibles à l’avant, ce qui indique que le dinosaure marchait avec ses orteils touchant le sol et qu’il pourrait appartenir à un stégosaure ou à un ankylosaure.

« Sur la base des observations sur le terrain, on suppose que cette zone pourrait avoir été située au bord d’un lac, entourée d’une végétation abondante », a déclaré Wang. « Une fois que différents types de dinosaures ont fini de se nourrir, ils sont probablement venus au lac pour boire de l’eau et se sont plongés dans la boue et le sable au bord de l’eau », a-t-il ajouté.

Konglongshan, dont le nom se traduit par « Montagne des dinosaures », est une zone de découverte concentrée d’empreintes de dinosaures fossilisées. Cependant, Wang a déclaré que la découverte de cette taille et de cette diversité est sans précédent, indiquant la présence étendue de divers groupes de dinosaures dans la région de Luofeng au début du Crétacé.

READ  Big Science Art : visualisation de la rotation du trou noir de l'Openverse dans le magazine NATURE

Depuis 1938, plus de 120 fossiles de dinosaures ont été découverts à Lufeng, mais aucun fossile du Crétacé n’a été découvert auparavant. Wang a déclaré que les empreintes de dinosaures récemment découvertes revêtaient une grande importance pour les efforts futurs visant à localiser des fossiles de dinosaures du Crétacé dans la région.

Chine

Continue Reading

Trending

Copyright © 2023