Connect with us

science

De nouvelles images révèlent la véritable forme de Neptune et d'Uranus – The Irish News

Published

on

De nouvelles images révèlent la véritable forme des planètes les plus éloignées du système solaire : Neptune et Uranus.

Beaucoup de gens pensent que Neptune est d'une riche couleur bleue et qu'Uranus est plus verte.

Mais une nouvelle étude révèle que les deux géantes de glace sont en réalité beaucoup plus proches qu’on ne le pense habituellement.

De nouvelles images révèlent à quoi ressemblent réellement Neptune et Uranus (Patrick Irwin/Université d'Oxford/NASA/JPL-Caltech)
Couleurs de Neptune et d'Uranus De nouvelles images révèlent à quoi ressemblent réellement Neptune et Uranus (Patrick Irwin/Université d'Oxford/NASA/JPL-Caltech)

Le professeur Patrick Irwin de l'Université d'Oxford et son équipe ont découvert que les deux planètes ont une nuance similaire de bleu verdâtre.

Les experts soulignent que l'idée selon laquelle les deux planètes ont des couleurs différentes est née du fait que des images prises au XXe siècle – notamment par la mission Voyager 2 de la NASA, le seul vaisseau spatial à survoler ces deux planètes – ont enregistré des images avec des couleurs distinctes.

Les images monochromes ont ensuite été recombinées pour créer des images couleur composites, qui n'étaient pas toujours précisément équilibrées pour une image en couleurs vraies.

Dans le cas de Neptune en particulier, ces composés étaient souvent très bleus.

Les premières images de Neptune prises par Voyager 2 ont été puissamment améliorées pour mieux révéler les nuages, les bandes et les vents qui composent l'apparence que nous pensons de la planète, affirment les scientifiques.

Le professeur Irwin a déclaré : « Bien que les images familières d'Uranus prises par Voyager 2 aient été publiées sous une forme plus proche des « vraies » couleurs, les images de Neptune ont en réalité été étirées et améliorées, et donc artificiellement décalées vers le bleu.

READ  La photo spatiale de cette semaine : Saurez-vous repérer le robot caché sur les pentes de Mars ?

« Bien que la couleur artificiellement saturée soit connue à l'époque parmi les planétologues – et que des images aient été publiées avec des légendes l'expliquant – cette distinction a été perdue au fil du temps. »

« En appliquant notre modèle aux données originales, nous avons pu reconstruire la représentation la plus précise à ce jour de la couleur de Neptune et d'Uranus », a-t-il ajouté.

Dans la nouvelle étude, les chercheurs ont utilisé les données de l'imageur spectroscopique (STIS) du télescope spatial Hubble et de l'explorateur spectroscopique multi-unités (MUSE) du très grand télescope de l'Observatoire européen austral.

Dans les deux appareils, chaque pixel est un spectre continu de couleurs, ce qui signifie que les observations qui en découlent peuvent être traitées pour déterminer la véritable couleur apparente d'Uranus et de Neptune.

Les chercheurs ont utilisé les données pour rééquilibrer les images couleur composites enregistrées par Voyager 2, ainsi que par la caméra à grand champ 3 (WFC3) du télescope spatial Hubble.

Cela a révélé qu’Uranus et Neptune ont en fait des nuances de bleu sarcelle quelque peu similaires.

Cependant, l'étude a également révélé que Neptune présente une légère touche de bleu supplémentaire, qui, selon le modèle, est causée par une couche de brume plus fine sur cette planète.

L’étude apporte également une réponse au mystère de longue date de la raison pour laquelle Uranus change légèrement de couleur au cours de son orbite de 84 ans autour du soleil.

Selon les résultats, cela est dû à l’épaisseur de certains gaz aux pôles nord et sud de la planète et à la manière dont ils apparaissent lorsque ces pôles sont plus proches du soleil.

READ  Le fossile trouvé dans le tiroir s'est avéré être le plus ancien ancêtre connu des lézards fossiles

Le professeur Irwin a déclaré : « Il s’agit de la première étude qui associe un modèle quantitatif à des données d’imagerie pour expliquer pourquoi Uranus change de couleur au cours de son orbite. »

« De cette façon, nous avons démontré qu’Uranus est plus verte au solstice en raison d’une diminution de l’abondance de méthane dans les régions polaires mais également d’une augmentation de l’épaisseur des particules de glace de méthane brillamment dispersées. »

« Uranus nous a gâtés pendant des décennies », a déclaré le Dr Heidi Hamill, de l'Association des universités pour la recherche en astronomie (AURA), qui a passé des décennies à étudier Neptune et Uranus mais n'a pas participé à l'étude.

«Cette étude approfondie devrait enfin mettre un terme à ces deux problèmes.»

Les résultats ont été publiés dans les Avis mensuels de la Royal Astronomical Society.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Comptabilité mondiale des rivières de la Terre

Published

on

Comptabilité mondiale des rivières de la Terre

Pendant des décennies, la plupart des estimations de l'eau totale des rivières sur Terre étaient des améliorations par rapport aux chiffres de l'ONU de 1974. De meilleures estimations ont été difficiles à obtenir en raison du manque d'observations des rivières du monde, en particulier celles qui sont éloignées des concentrations humaines. Aujourd'hui, en utilisant une nouvelle approche, les scientifiques de la NASA ont réalisé de nouvelles estimations de la quantité d'eau qui s'écoule dans les rivières de la Terre, de la vitesse à laquelle elle s'écoule dans l'océan et de la fluctuation de ces deux chiffres au fil du temps. Ces informations sont essentielles pour comprendre le cycle de l’eau de la planète et gérer les réserves d’eau douce.

Pour obtenir une image globale de la quantité d'eau que contiennent les rivières de la Terre, des scientifiques du Jet Propulsion Laboratory (JPL) de la NASA ont combiné des mesures de débitmètre avec des modèles informatiques d'environ 3 millions de segments de rivières à travers le monde. La recherche a été dirigée par Elissa Collins, qui a mené l’analyse en tant que stagiaire au JPL et doctorante à la North Carolina State University. Publié dans Sciences naturelles de la terre.

Les scientifiques ont estimé que le volume total d'eau des rivières de la Terre, en moyenne, entre 1980 et 2009, était de 2 246 kilomètres cubes (539 miles cubes). Cela équivaut à la moitié de l’eau du lac Michigan et à environ 0,006 % de l’eau douce totale, qui représente elle-même 2,5 % du volume mondial. Même si les rivières représentent une petite partie de l'approvisionnement total en eau de la planète, elles sont vitales pour les humains depuis les premières civilisations.

READ  La photo spatiale de cette semaine : Saurez-vous repérer le robot caché sur les pentes de Mars ?

La carte en haut de cette page montre le volume d'eau stocké par région hydrologique. Les chercheurs ont estimé que le bassin amazonien (bleu foncé) contient environ 38 pour cent de l'eau fluviale mondiale, le pourcentage le plus élevé évalué dans toutes les régions hydrologiques. Le même bassin rejette également le plus d’eau dans l’océan (deuxième carte) : 6 789 kilomètres cubes (1 629 miles cubes) par an. Cela représente 18 % des rejets mondiaux dans les océans, qui ont atteint en moyenne 37 411 kilomètres cubes (8 975 milles cubes) par an de 1980 à 2009.

Bien qu'il ne soit pas possible qu'une rivière ait un débit négatif (l'approche de l'étude ne permet pas un écoulement en amont), à des fins comptables, il est possible que moins d'eau sorte de certaines parties de la rivière qu'elle n'en entre. C’est ce que les chercheurs ont découvert pour certaines parties des bassins des fleuves Colorado, Amazone et Orange, ainsi que pour le bassin Murray-Darling, dans le sud-est de l’Australie. Ces flux négatifs indiquent pour la plupart une utilisation humaine intense de l’eau.

« Ce sont les endroits où nous voyons les empreintes digitales de la gestion de l’eau », a déclaré Collins.

Images de l'Observatoire de la Terre de la NASA par Lauren Dauphin, utilisant les données de Collins, L. et coll. (2024). Le texte a été modifié de Matériel publié pour la première fois Le 24 avril 2024, par Andrew Wang/JPL.

Continue Reading

science

En découvrant le trou bleu le plus profond du monde, on pense qu'il contient des grottes et des tunnels cachés.

Published

on

En découvrant le trou bleu le plus profond du monde, on pense qu'il contient des grottes et des tunnels cachés.

Les chercheurs ont découvert que le trou bleu de Tam Ga, au Mexique, est le trou sous-marin connu le plus profond au monde, et ils n'ont pas encore atteint le fond.

De nouvelles mesures indiquent que le Tam Ja Blue Hole (TJBH), situé dans la baie de Chetumal, au large de la côte sud-est de la péninsule du Yucatán, s'étend à au moins 1 380 pieds (420 mètres) sous le niveau de la mer.

Continue Reading

science

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Published

on

Un nouvel alliage choque les scientifiques par sa résistance et sa dureté presque impossibles

Carte de la structure cristalline de l'alliage obtenue à partir de la diffraction par rétrodiffusion des électrons au microscope électronique à balayage. Chaque couleur représente une partie du cristal où la structure répétitive change d'orientation 3D. Crédit : Laboratoire de Berkeley

Des chercheurs ont découvert un minéral inhabituel Alliage Il ne se fissurera pas à des températures extrêmes en raison de la flexion ou de la flexion des cristaux de l'alliage au niveau atomique.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium a choqué les scientifiques des matériaux par sa résistance et sa ténacité étonnantes à des températures extrêmement chaudes et froides, une combinaison de propriétés qui semblaient jusqu'à présent presque impossibles à obtenir. Dans ce contexte, la résistance est définie comme la quantité de force qu'un matériau peut supporter avant d'être déformé de manière permanente par rapport à sa forme d'origine, et la ténacité est sa résistance à la rupture (fissuration). La résilience de l'alliage à la flexion et à la rupture dans un large éventail de conditions pourrait ouvrir la porte à une nouvelle classe de matériaux pour les moteurs de nouvelle génération, capables de fonctionner plus efficacement.

L'équipe, dirigée par Robert Ritchie du Lawrence Berkeley National Laboratory (Berkeley Laboratory) et de l'UC Berkeley, en collaboration avec des groupes dirigés par les professeurs Deran Apelian de l'UC Irvine et Enrique Lavernia de la Texas A&M University, a découvert puis découvert les propriétés étonnantes de l'alliage. . Comment résultent-ils des interactions dans la structure atomique ? Leurs travaux ont été décrits dans une étude récemment publiée dans la revue les sciences.

« L'efficacité de la conversion de la chaleur en électricité ou en propulsion est déterminée par la température à laquelle le carburant est brûlé : plus il est chaud, mieux c'est. Cependant, la température de fonctionnement est limitée par les matériaux structurels auxquels il doit résister. » Nous avons épuisé la possibilité d’améliorer les matériaux que nous utilisons actuellement à haute température, et il existe un grand besoin de nouveaux matériaux métalliques. C’est ce que promet cet alliage.

L'alliage dans cette étude appartient à une nouvelle classe de métaux connus sous le nom d'alliages résistants aux températures élevées ou moyennes (RHEA/RMEA). La plupart des métaux que nous voyons dans les applications commerciales ou industrielles sont des alliages constitués d'un métal parent mélangé à de petites quantités d'autres éléments, mais les RHEA et les RMEA sont fabriqués en mélangeant des quantités presque égales d'éléments métalliques avec des températures de fusion très élevées, ce qui leur confère des propriétés encore uniques. . Les scientifiques le découvrent. Le groupe de Ritchie étudie ces alliages depuis plusieurs années en raison de leur potentiel pour les applications à haute température.

Un alliage métallique composé de niobium, de tantale, de titane et de hafnium

Cette carte de structure du matériau montre des bandes de réseau qui se forment près du fond de fissure lorsque les fissures se propagent (de gauche à droite) dans l'alliage à 25°C, température ambiante. Réalisé à l'aide d'un détecteur de diffraction de rétrodiffusion d'électrons dans un microscope électronique à balayage. Crédit : Laboratoire de Berkeley

« Notre équipe a déjà effectué des travaux sur les RHEA et les RMEA et a découvert que ces matériaux sont très résistants, mais ont généralement une très faible ténacité à la rupture, c'est pourquoi nous avons été choqués lorsque cet alliage a montré une ténacité exceptionnellement élevée », a déclaré le co-auteur. Puneet Kumar, chercheur postdoctoral du groupe.

READ  Des chercheurs développent une approche chimique pour polymériser des protéines à l'intérieur des microbes

Selon Cook, la plupart des RMEA ont une ténacité inférieure à 10 MPa, ce qui en fait l'un des métaux les plus fragiles de tous. Les meilleurs aciers cryogéniques, spécialement conçus pour résister à la casse, sont environ 20 fois plus résistants que ces matériaux. Cependant, le niobium, le tantale, le titane et le hafnium (Nb45Ta25T15Haute fréquence15) L'alliage RMEA était capable de surpasser même l'acier cryogénique, enregistrant des performances plus de 25 fois supérieures à celles du RMEA typique à température ambiante.

Mais les moteurs ne fonctionnent pas à température ambiante. Les scientifiques ont évalué la résistance et la durabilité à cinq températures totales : -196°C (température de l'azote liquide), 25°C (température ambiante), 800°C, 950°C et 1 200°C. Cette dernière température est environ 1/5 de la température de la surface du Soleil.

L’équipe a découvert que l’alliage présente sa plus grande résistance au froid et s’affaiblit légèrement à mesure que la température augmente, mais présente toujours des chiffres impressionnants sur une large plage. La ténacité à la rupture, calculée à partir de la force nécessaire pour propager une fissure existante dans un matériau, était élevée à toutes les températures.

Révéler les arrangements atomiques

Presque tous les alliages métalliques sont cristallins, ce qui signifie que les atomes contenus dans le matériau sont disposés en unités répétitives. Cependant, aucun cristal n’est parfait, ils contiennent tous des imperfections. Le défaut le plus important qui se déplace est appelé dislocation, c'est-à-dire un plan imparfait d'atomes dans le cristal. Lorsqu’une force est appliquée au métal, plusieurs dislocations se déplacent pour s’adapter au changement de forme.

READ  ESA - Alex sur les rochers

Par exemple, lorsque vous pliez un trombone en aluminium, le mouvement des dislocations à l’intérieur du trombone s’adapte au changement de forme. Cependant, le mouvement des dislocations devient plus difficile à basse température et, par conséquent, de nombreux matériaux deviennent cassants à basse température car les dislocations ne peuvent pas bouger. C'est pourquoi la coque en acier du Titanic s'est brisée lorsqu'elle a heurté un iceberg. Les éléments à haute température de fusion et leurs alliages poussent cela à l'extrême, nombre d'entre eux restant cassants même jusqu'à 800°C. Cependant, cette RMEA va à l’encontre de la tendance, en résistant aux interruptions même à des températures aussi basses que l’azote liquide (-196°C).

Les Kink Bands sont un alliage métallique composé de niobium, de tantale, de titane et d'hafnium.

Cette carte montre les bandes de réseau formées près du fond de fissure lors d'un test de propagation de fissure (de gauche à droite) dans l'alliage à -196°C. Crédit : Laboratoire de Berkeley

Pour comprendre ce qui se passait à l'intérieur du métal exquis, le co-chercheur Andrew Minor et son équipe ont analysé les échantillons soumis à des contraintes, ainsi que des échantillons témoins non pliés et non fissurés, à l'aide d'un microscope électronique à balayage tridimensionnel (4D-STEM) et d'un microscope électronique à balayage ( STEM) au Centre national de microscopie électronique, qui fait partie de la fonderie moléculaire du Berkeley Lab.

Les données du microscope électronique ont révélé que la dureté inhabituelle de l'alliage provient d'un effet secondaire inattendu d'un défaut rare appelé bande pliée. Des bandes de nœuds se forment dans un cristal lorsqu'une force appliquée provoque l'effondrement soudain des segments du cristal sur eux-mêmes et leur courbure. La direction dans laquelle le cristal se courbe dans ces brins augmente la force ressentie par les dislocations, les rendant ainsi plus faciles à déplacer. Au niveau de la masse, ce phénomène provoque un ramollissement du matériau (ce qui signifie que moins de force doit être appliquée sur le matériau lors de sa déformation). L'équipe savait, grâce à des recherches antérieures, que des bandes de nœuds se formaient facilement dans le RMEA, mais ils ont émis l'hypothèse que l'effet adoucissant rendrait le matériau moins rigide en facilitant la propagation des fissures à travers le réseau. Mais en réalité, ce n’est pas le cas.

READ  Nouveau framework et service web

« Nous avons montré, pour la première fois, que dans le cas d'une fissure brutale entre des atomes, les bandes de torsion résistent réellement à la propagation des fissures en répartissant les dommages loin d'elles, empêchant ainsi la fracture et entraînant une ténacité inhabituellement élevée », a déclaré Cook.

N.-B.45Ta25T15Haute fréquence15 Les alliages devront subir des recherches plus fondamentales et des tests techniques avant de réaliser quelque chose comme une turbine à réaction ou EspaceX La tuyère de la fusée en est fabriquée, a déclaré Ritchie, car les ingénieurs en mécanique doivent vraiment comprendre en profondeur les performances de leurs matériaux avant de les utiliser dans le monde réel. Cependant, cette étude suggère que le métal a le potentiel pour construire les moteurs du futur.

Référence : « Les bandes pliées améliorent la résistance exceptionnelle à la rupture dans l'alliage réfractaire à entropie moyenne NbTaTiHf » par David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj , Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Deran Abelian et Robert O. Richie, 11 avril 2024, les sciences.
est ce que je: 10.1126/science.adn2428

Cette recherche a été menée par David H. Cook, Puneet Kumar et Madeleine I. Payne et Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zihao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor et Enrique. J. Lavernia, Deran Abelian et Robert O. Ritchie, des scientifiques du Berkeley Lab, de l'UC Berkeley, du Pacific Northwest National Laboratory et de l'UC Irvine, avec un financement du Bureau des sciences du ministère de l'Énergie. L'analyse expérimentale et informatique a été réalisée à la Fonderie Moléculaire et au Centre Informatique Scientifique National de Recherche Énergétique, deux installations utilisatrices du Bureau des Sciences du Département de l'Énergie.

Continue Reading

Trending

Copyright © 2023