Connect with us

science

Découvrez les secrets de la chimie spatiale

Published

on

Découvrez les secrets de la chimie spatiale

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Les cristaux coulombiens entourés de molécules sont utilisés au Laboratoire Lewandowski pour étudier les réactions astrochimiques. Crédit : Stephen Burroughs/Olivia Krohn et le groupe Lewandowski

× Fermer

Les cristaux coulombiens entourés de molécules sont utilisés au Laboratoire Lewandowski pour étudier les réactions astrochimiques. Crédit : Stephen Burroughs/Olivia Krohn et le groupe Lewandowski

Même si cela ne semble pas être le cas, l’espace interstellaire entre les étoiles n’est pas du tout vide. Des atomes, des ions, des molécules et bien plus encore existent dans cet environnement éthéré connu sous le nom de milieu interstellaire (ISM). L’ISM fascine les scientifiques depuis des décennies, avec au moins 200 molécules uniques formées dans son environnement froid et basse pression. C'est un sujet qui relie les domaines de la chimie, de la physique et de l'astronomie, car les scientifiques de chaque domaine travaillent pour déterminer les types de réactions chimiques qui s'y produisent.

Passons maintenant à la couverture de l'article Journal de chimie physique AHeather Lewandowski, boursière de la JILA et professeure de physique à l'Université du Colorado à Boulder, et Olivia Krohn, ancienne étudiante diplômée de la JILA, mettent en avant leur travail visant à imiter les conditions ISM à l'aide de cristaux de Coulomb, une structure pseudo-cristalline froide, pour observer les ions et les molécules neutres interagir les uns avec les autres.

Grâce à leurs expériences, les chercheurs ont pu résoudre la dynamique chimique des réactions neutres des ions en utilisant le microrefroidissement laser et la spectrométrie de masse pour contrôler les états quantiques, leur permettant ainsi de simuler avec succès les réactions chimiques ISM. Leurs travaux rapprochent les scientifiques de la réponse à certaines des questions les plus profondes sur l’évolution chimique de l’univers.

Filtrage par énergie

« Ce domaine réfléchit depuis longtemps aux réactions chimiques qui seront les plus importantes pour nous renseigner sur la composition du milieu interstellaire », explique Cron, premier auteur de l'étude.

« Un groupe vraiment important est celui des interactions moléculaires neutres des ions. Et c'est exactement à cela que convient ce dispositif expérimental du groupe Lewandowski, non seulement pour étudier les interactions chimiques neutres des ions, mais également à des températures relativement froides. »

Pour commencer l'expérience, Krohn et d'autres membres du groupe de Levandowski ont chargé un piège à ions dans une chambre à très vide avec différents ions. Les molécules neutres ont été présentées séparément. Même s’ils savaient quels réactifs seraient utilisés dans une expérience chimique de type ISM, les chercheurs n’étaient pas toujours sûrs des produits qui seraient produits. En fonction de leur test, les chercheurs ont utilisé différents types d'ions et de molécules neutres similaires à ceux trouvés dans l'ISM. Cela inclut CCl+ Ions fragmentés de tétrachloroéthylène.

« CCl+ On s’attend à ce qu’il se situe dans différentes régions de l’espace. « Mais personne n'a pu tester efficacement son interaction par le biais d'expériences sur Terre, car c'est très difficile à réaliser », ajoute Krohn. « Il faut le décomposer du tétrachloroéthylène avec un laser ultraviolet. Cela crée toutes sortes de fragments ioniques, pas seulement du CCl. »+« Cela pourrait compliquer les choses. »

Soit en utilisant du calcium, soit du CCl+ Ions Le dispositif expérimental a permis aux chercheurs de filtrer les ions indésirables à l'aide d'une excitation résonante, laissant derrière eux les produits chimiques réactifs.

« Vous pouvez secouer le piège à une fréquence qui correspond au rapport masse/charge d'un ion particulier, ce qui le fait sortir du piège », explique Krohn.

Refroidissement laser pour former des cristaux coulombiens

Après filtration, les chercheurs ont refroidi leurs ions en utilisant un processus appelé refroidissement Doppler. Cette technologie utilise la lumière laser pour réduire le mouvement des atomes ou des ions, les refroidissant efficacement en exploitant l'effet Doppler pour ralentir préférentiellement le mouvement des molécules vers le laser de refroidissement.

Lorsque le refroidissement Doppler a abaissé la température des particules jusqu'à des niveaux millikelvins, les ions se sont organisés en une structure pseudo-cristalline, un cristal coulombien, maintenu en place par des champs électriques à l'intérieur de la chambre à vide. Le cristal coulombien résultant avait une forme ellipsoïde avec des particules plus lourdes reposant dans une coquille à l'extérieur des ions calcium, poussées hors du centre du piège par les particules plus légères en raison des différences dans les rapports masse/charge.

Grâce au piège profond contenant les ions, les cristaux coulombiens peuvent rester piégés pendant des heures, et Krohn et son équipe peuvent les imager dans ce piège. En analysant les images, les chercheurs ont pu identifier et surveiller l’interaction en temps réel, et voir les ions s’organiser en fonction de leurs rapports masse/charge.

L’équipe a également déterminé la dépendance de l’état quantique de l’interaction des ions calcium avec l’oxyde nitrique en affinant les lasers cryogéniques, ce qui a permis de produire des combinaisons relatives spécifiques d’états quantiques pour les ions calcium piégés.

« Ce qui est amusant, c'est qu'il tire parti de l'une des techniques les plus spécifiques de la physique atomique pour examiner les interactions quantiques, ce qui, je pense, constitue un peu plus le cœur de la physique dans les trois domaines : chimie, astronomie et physique. , même si les trois sont ce qu'ils sont toujours impliqués.

Le timing est primordial

Outre la filtration par piège et le refroidissement Doppler, une troisième technique expérimentale a aidé les chercheurs à simuler les interactions ISM : une configuration de spectrométrie de masse à temps de vol (TOF-MS). Dans cette partie de l’expérience, une impulsion à haute tension a accéléré les ions à travers le tube de vol, où ils ont heurté un détecteur à plaque à microcanaux. Les chercheurs ont pu identifier les particules dans le piège en fonction du temps nécessaire aux ions pour atteindre la plaque et de leurs techniques d'imagerie.

« Grâce à cela, nous avons pu réaliser deux études différentes dans lesquelles nous avons pu résoudre les masses adjacentes pour les ions réactifs et produits », ajoute Kron.

Ce troisième bras de l'appareil expérimental de la chimie ISM a encore amélioré la précision, car les chercheurs disposent désormais de plusieurs moyens pour identifier les produits créés dans les réactions de type ISM et leurs masses spécifiques.

Le calcul de la masse des produits potentiels était particulièrement important, car l’équipe était alors en mesure d’échanger les réactifs initiaux avec des isotopes de masses différentes et de voir ce qui se passait.

Comme l'explique Krohn : « Cela nous permet de jouer des tours sympas comme remplacer des atomes d'hydrogène par des atomes de deutérium ou remplacer différents atomes par des isotopes plus lourds. Lorsque nous faisons cela, nous pouvons voir par spectrométrie de masse à temps de vol comment nos produits ont changé, ce qui est le cas. nous donne plus de confiance dans nos connaissances sur la façon d'identifier ce que sont ces produits.

Étant donné que les astrochimistes ont observé plus de molécules contenant du deutérium dans l'ISM que ce que l'on pourrait attendre du rapport atomique deutérium/hydrogène observé, l'échange isotopique dans des expériences comme celle-ci permet aux chercheurs de faire un pas de plus vers la détermination de la raison.

« Je pense que, dans ce cas, cela nous permet d'avoir une bonne détection de ce que nous voyons », explique Krohn. « Cela ouvre plus de portes. »

Plus d'information:
OA Krohn et al., Interactions moléculaires ioniques froides dans l'environnement extrême d'un cristal coulombien, Journal de chimie physique A (2024). est ce que je: 10.1021/acs.jpca.3c07546

Informations sur les magazines :
Journal de chimie physique A


READ  Les nuages ​​de poussière issus de l’exploitation minière en haute mer parcourent de longues distances – Recherche
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Trous noirs : pourquoi les étudie-t-on ? Qu’est-ce qui le rend si génial ?

Published

on

Trous noirs : pourquoi les étudie-t-on ?  Qu’est-ce qui le rend si génial ?

Au cours des derniers mois, L’univers aujourd’hui Explorez un grand nombre de domaines scientifiques, parmi lesquels les cratères d’impact, les surfaces planétaires, les exoplanètes, l’astrobiologie, l’héliophysique, les comètes, les atmosphères planétaires, la géophysique planétaire, la cosmochimie, les météorites, la radioastronomie, l’extrémophysiologie, la chimie organique, et comment ces différentes disciplines aident les scientifiques et les le public comprend mieux notre place dans l’univers.

Nous discuterons ici du domaine fascinant et mystérieux des trous noirs avec Dr Gaurav Khanna, professeur au Département de physique de l’Université de Rhode Island, concernant l’importance de l’étude des trous noirs, les avantages et les défis, les aspects passionnants de l’étude des trous noirs et la manière de suivre les étudiants qui souhaitent étudier les trous noirs. Alors, pourquoi est-il important d’étudier les trous noirs ?

« La gravité est la force la plus ancienne connue dans la nature, mais la moins bien comprise », explique le Dr Khanna. L’univers aujourd’hui. « Pour les étudiants en gravité, les trous noirs sont parmi les choses les plus intéressantes à étudier car la gravité y est la force dominante – en fait, elle est infiniment puissante ! Il y a ensuite des raisons astrophysiques de s’intéresser aux trous noirs. Ils jouent un rôle important dans les galaxies ! , et peut-être même dans le comportement. » La grande échelle de l’univers et plus encore. L’autre chose à noter à propos des trous noirs est qu’ils sont très « simples », surtout lorsqu’on les compare aux étoiles et à d’autres objets astrophysiques. -appelé théorème « sans cheveux » qui stipule que les trous noirs peuvent être complètement décrits par… Avec seulement trois propriétés : leur masse, leur charge et leur spin. Cette simplicité les rend particulièrement attrayants pour l’étude et la recherche.

trous noirs On sait qu’ils présentent une gravité si forte que même la lumière ne peut s’en échapper, comme c’est le cas d’Albert Einstein. Théorie générale de la relativité On attribue souvent à 1915 la première proposition du concept de trous noirs, le concept d’un objet dont la taille et la gravité ne permettent pas à la lumière de s’échapper. Il a été proposé pour la première fois dans une lettre écrite par le philosophe et religieux anglais John Mitchell en novembre 1784. Dans cette lettre, Mitchell faisait référence à cela. Les objets étaient appelés « étoiles sombres » car on supposait que les étoiles d’un diamètre dépassant 500 fois le diamètre de notre Soleil conduiraient à la formation de ces objets. De plus, il a été suggéré que les ondes gravitationnelles affectant les corps célestes proches permettraient la détection de ces objets.

READ  Le télescope Webb atteint son ultime défi de déploiement

Avance rapide vers la théorie de la relativité générale d’Einstein, qui prédisait également l’existence de trous noirs et d’ondes gravitationnelles, qui sont tous deux restés sous surveillance tout au long du 20e siècle.oui Siècle, qui comprend ce qu’on appelle « L’âge d’or de la relativité générale » Durant les années soixante et soixante-dix. Cela inclut le premier objet accepté par la communauté scientifique comme un trou noir, appelé Cygnus LIGO. Alors, compte tenu de la longue histoire combinée aux découvertes majeures qui n’ont eu lieu qu’au cours des dernières années, quels sont les avantages et les défis de l’étude des trous noirs ?

Le Dr Khanna dit L’univers aujourd’hui« Comme je l’ai mentionné plus haut, l’étude des trous noirs, qui est une conséquence de la théorie de la relativité d’Einstein, donne un aperçu de la nature de la gravité, de l’espace et du temps à des niveaux fondamentaux. En tant que physiciens, nous devons encore développer une compréhension complète de ces phénomènes. La nature quantique de la gravité et les trous noirs sont la clé pour résoudre ce mystère. » En termes de défis, je dirais que le plus évident est probablement que les trous noirs ne peuvent être observés qu’indirectement, contrairement aux étoiles, puisqu’ils n’émettent pas de rayonnement. seuls, il est difficile pour les astronomes de collecter des données sur eux et au mieux, nous pouvons les observer. Leur influence sur leur environnement (comme les gaz, les étoiles, etc.) et en déduire leurs propriétés et leur comportement. Sur le plan théorique, bien que ce soit En effet, il est vrai que les trous noirs sont très « simples » comparés aux étoiles, mais les mathématiques et la physique qui les décrivent sont assez avancées, et même les simulations informatiques impliquées sont difficiles et nécessitent une puissance de traitement et une mémoire énormes.

READ  Les nuages ​​de poussière issus de l’exploitation minière en haute mer parcourent de longues distances – Recherche

S’il a fallu plus de 100 ans entre l’introduction par Einstein de sa théorie de la relativité générale en 1915 et la confirmation des ondes gravitationnelles en 2016, il n’a fallu que trois ans supplémentaires aux astronomes pour publier la première image directe d’un trou noir au centre d’un galaxie. Messi 87 galaxie. Et les résultats furent Publié dans Lettres de journaux astrophysiques Basé sur des observations prises en 2017 par le puissant Event Horizon Telescope (EHT). Alors que Messier 87 est situé à environ 53 millions d’années-lumière de la Terre, le trou noir supposé le plus proche, Gaia BH1, est situé à environ 1 560 années-lumière de la Terre. En 2022, des astronomes ont publié une image en direct de Sagittarius A*, le trou noir supermassif au centre de notre Voie lactée.

En outre, les scientifiques supposent que le nombre de trous noirs dans notre Voie lactée se compte en centaines de millions, bien qu’il n’y ait jusqu’à présent que quelques dizaines de trous noirs connus. Mais quels sont les aspects les plus passionnants des trous noirs que le Dr Khanna a étudiés au cours de sa carrière ?

Le Dr Khanna dit L’univers aujourd’hui« Je suppose que je mentionnerai probablement mes travaux récents sur la vitesse de rotation des trous noirs. J’essaie de « faire pousser les cheveux », mais j’échoue finalement. Le projet est intéressant car il semble suggérer une violation de la théorie du « pas de cheveux » que j’ai évoquée plus tôt, mais ce n’est finalement pas le cas. C’est donc provocateur, mais ensuite apaisant ! Surtout, nous utilisons désormais le contexte principal de cette recherche pour la développer Nouvelle signature observationnelleOu tester des trous noirs à rotation rapide, également appelés trous noirs quasi extrêmes. Ces trous noirs ont de nombreuses propriétés et aspects étranges et font l’objet de recherches actives.

Les trous noirs sont étudiés par des astronomes, des physiciens et des astrophysiciens, qui utilisent une combinaison de théorie et d’observations pour construire à quoi pourraient ressembler les trous noirs et, dans de rares cas, comme nous l’avons vu, en obtiennent des images directes. En termes de théorie, les chercheurs utilisent des calculs mathématiques et des modèles informatiques pour simuler à quoi pourraient ressembler les trous noirs, puis utilisent de puissants télescopes au sol comme l’EHT pour obtenir les quelques images directes des trous noirs. Il est important de noter que ces images directes ne capturent pas le trou noir lui-même, mais plutôt les gaz entourant le trou noir. Horizon des événementsOu la frontière informelle où la lumière ne peut pas s’échapper d’un trou noir. Mais quels conseils le Dr Khanna donnerait-il aux nouveaux étudiants qui souhaitent poursuivre l’étude des trous noirs ?

READ  Des scientifiques simulent l'origine de mystérieuses explosions radio depuis l'espace lointain

Le Dr Khanna dit L’univers aujourd’hui« Je vais leur donner beaucoup d’encouragements ! Il y a tellement de choses à faire dans cet espace et tant de mystères à résoudre. Les nouvelles observations ouvriront de nombreuses nouvelles portes et de nouvelles voies de recherche. C’est l’un des meilleurs moments pour être un Noir. astrophysicien du trou !

« La seule chose que je peux dire et qui n’a probablement pas été autant soulignée ailleurs, c’est que l’informatique est un outil pour étudier les trous noirs », poursuit le Dr Khanna. « Pour l’essentiel, l’accent est mis sur l’apprentissage des mathématiques avancées. comme toile de fond pour des recherches sérieuses sur les trous noirs — et pour cause — qui intéressent toujours beaucoup tous ceux qui étudient la théorie de la relativité d’Einstein, qui est à la base de la physique des trous noirs. Ces dernières années, les simulations informatiques se sont développées rapidement et. on peut désormais faire des découvertes majeures sur des questions profondes à l’aide d’outils informatiques. La programmation informatique est un outil très prometteur pour développer la recherche dans ce domaine et dans bien d’autres encore.

Comment les trous noirs nous aideront-ils à mieux comprendre notre place dans l’univers dans les années et décennies à venir ? Seul le temps nous le dira, c’est pourquoi nous étudions !

Comme toujours, continuez à faire de la science et continuez à rechercher !

Continue Reading

science

La découverte de gènes pourrait conduire à un atome flexible et « désordonné »

Published

on

La découverte de gènes pourrait conduire à un atome flexible et « désordonné »



Les chercheurs ont identifié un gène largement présent dans les plantes comme principal transporteur d’une hormone qui affecte la taille du maïs.

Cette découverte fournit aux sélectionneurs de plantes un nouvel outil pour développer des variétés naines souhaitables qui peuvent améliorer la résilience et la rentabilité des cultures.

Une équipe de scientifiques a passé des années à déterminer les fonctions du gène ZmPILS6. Aujourd’hui, ils sont en mesure de le décrire comme un facteur important de la taille et de la structure des plantes, et comme un transporteur de l’hormone auxine qui aide à contrôler la croissance des racines souterraines et des pousses, ou tiges, au-dessus du sol.

Leurs conclusions sont publiées dans Actes de l’Académie nationale des sciences.

« La particularité de l’ère scientifique actuelle est que nous disposons de toutes ces données génétiques de haute qualité, que ce soit sur le maïs, sur les humains ou sur d’autres organismes, et que nous avons désormais pour tâche de découvrir ce que font réellement les gènes », explique Dior-Kelly. . est professeur adjoint de génétique, de développement et de biologie cellulaire à l’Iowa State University, qui a dirigé l’équipe de recherche.

Le groupe a utilisé le « criblage génétique inverse » (du gène au trait exprimé dans la plante), ainsi que d’autres techniques, pour retracer le rôle des gènes dans l’évolution du maïs. Les écrans inversés nécessitent plusieurs saisons de croissance et ne fonctionnent pas toujours, selon Kelly. Il a fallu sept ans à son équipe pour caractériser précisément ZmPILS6 et vérifier qu’il régule la croissance des plantes.

READ  Le troisième vol d'essai de la fusée massive de SpaceX se termine par la perte du vaisseau spatial

Lorsque les plantes modifiées et transformées étaient « supprimées », leur absence supprimait la formation de racines latérales et la hauteur de la plante. La recherche a conduit à un brevet provisoire pour son utilisation potentielle dans des programmes de sélection visant à produire du maïs de petite taille encore très productif.

«Je pense que c’est comme un maïs lutin», dit Kelly. « Il suscite beaucoup d’intérêt pour plusieurs raisons, notamment sa faible consommation d’eau et de nutriments et sa capacité à résister aux vents violents. »

En étudiant ZmPILS6 dans le maïs, les chercheurs sont arrivés à une autre découverte étrange : le gène semblait avoir des effets opposés sur la croissance des plantes par rapport au gène identique du maïs. ArabidopsisC’est une plante qui sert souvent de modèle pour la recherche.

« C’était complètement inattendu », dit Kelly. « Cela montre que les protéines végétales, qui ont évolué dans des contextes différents, peuvent se comporter différemment. Cela souligne la nécessité d’étudier les gènes directement au sein des principales cultures d’intérêt, plutôt que de penser que nous les comprenons en fonction de leur fonctionnement dans d’autres plantes. »

Kelly décrit la nouvelle recherche comme une recherche fondamentale « fondamentale » pour comprendre le gène qui influence de nombreux traits de développement complexes, qui a été préservé par l’évolution de nombreuses plantes, des algues au maïs.

« C’est également « transformateur », dans la mesure où il est lié aux ressources génétiques qui peuvent être utilisées pour améliorer les programmes de sélection », dit-elle. «Cela ouvre des questions et des aspects de recherche complètement nouveaux pour mon laboratoire.»

READ  L'électrolyte solide résistant à l'oxydation fournit une capacité énergétique élevée de la cathode Li2S

Co-auteurs supplémentaires de l’Iowa ; Université de Duke; et Université de Californie, Riverside.

L’Institut national de l’alimentation et de l’agriculture de l’USDA et le financement de démarrage de l’USDA du Collège d’agriculture et des sciences de la vie de l’Université d’État de l’Iowa ont financé les travaux.

source: Université d’État de l’Iowa

Continue Reading

science

Un nouveau modèle 3D montre comment les implants neuronaux soulagent la douleur chronique

Published

on

Un nouveau modèle 3D montre comment les implants neuronaux soulagent la douleur chronique

Modèle 3D développé par Université de Virginie occidentale Les neuroscientifiques montrent comment les stimulateurs implantables – du même type que ceux utilisés pour traiter la douleur chronique – peuvent cibler les neurones qui contrôlent des muscles spécifiques pour assurer la rééducation des personnes souffrant de troubles neurologiques tels qu’un accident vasculaire cérébral ou une lésion de la moelle épinière.

le StadeY compris le modèle, il a été publié dans la revue Nature Communications Biology.

Le dispositif, implanté sur ou à proximité de la moelle épinière, fonctionne en délivrant un signal électrique via un fil fin. Pour traiter la paralysie, la stimulation cible des parties spécifiques de la moelle épinière pour aider à restaurer la fonction musculaire et le mouvement. Cependant, l’efficacité du dispositif a été limitée par une compréhension insuffisante de l’emplacement des motoneurones qui se connectent à des muscles spécifiques dans la moelle épinière.

« Si nous voulons vraiment maximiser l’utilité de ces implants, nous voulons pouvoir sélectionner des motoneurones spécifiques qui activeront des muscles spécifiques et aideront à bouger de la bonne manière et au bon moment », a-t-il déclaré. Valéria Gritsenkoprofesseur agrégé à École de médecine WVUSections Performance humaine – Physiothérapie, Neurologie Et le Institut de neurosciences Rockefeller. « Les scientifiques veulent utiliser un modèle pour déterminer où implanter ce système. »

Dans le cadre de l’étude, Gritsenko a reçu une subvention de 600 000 $ sur trois ans du ministère américain de la Défense pour diriger une équipe visant à construire des modèles plus avancés du système neuromusculaire.

Grâce à d’autres études et tests, les chercheurs espèrent mieux comprendre dans quelle mesure ces appareils peuvent améliorer la fonction musculaire.

Pour mener l’étude, les chercheurs ont d’abord créé un modèle 3D de l’emplacement des motoneurones dans la moelle épinière d’un macaque – un singe de l’Ancien Monde – et l’ont comparé aux connaissances actuelles sur la moelle épinière humaine. Ils ont également créé des modèles 3D de l’anatomie musculo-squelettique d’un singe macaque et du membre supérieur droit d’un humain et ont comparé ces modèles.

« Nous avons étudié les différences et les changements dans la longueur des muscles dans différentes postures, à la fois chez le modèle humain et chez le singe », a-t-il déclaré. Rachel Taitano, doctorant en médecine et neurosciences de Fairfax, en Virginie, et auteur principal de l’étude. « Le modèle musculo-squelettique du singe montre que la biomécanique est similaire à celle des humains, même si l’espèce présente des différences dans les muscles qu’elle utilise, les muscles qu’elle possède et leurs différentes orientations et fonctions. »

L’étude montre une correspondance étroite dans la distribution ou la profondeur des groupes de motoneurones le long de la moelle épinière chez les macaques et les humains. Ces résultats permettront aux scientifiques d’obtenir une précision dans la fourniture du traitement.

« Certaines populations de motoneurones sont plus profondes dans la moelle épinière et d’autres sont plus proches de la surface », a expliqué Gritsenko. « Ce modèle nous permet d’examiner plus en profondeur l’endroit où les populations de motoneurones pourraient être les plus proches de la surface. C’est là que vous souhaitez stimuler l’activation de ces muscles. »

READ  La première étape du nouveau broyeur d'atomes massif européen pourrait avoir lieu dans 20 ans, selon ScienceAlert

« Connaître l’organisation vertébrale des assemblages de motoneurones – des groupes de cellules qui se connectent à un seul muscle – pourrait révéler quelque chose de fascinant », a expliqué Gritsenko, qui a été le chercheur principal. « Notre système musculo-squelettique complexe a évolué au fil du temps pour permettre une large gamme de résultats. de mouvements que nous voyons chez tous les « primates, y compris nous, les humains. L’équipe a découvert que nos moelles épinières contiennent des « cartes » intégrées qui reflètent cette fonction complexe. Cette « carte » aide à simplifier le contrôle de nos corps complexes via la moelle épinière.  » .

Un autre collègue sur le projet, Sergueï Yakovenkoprofesseur agrégé à la faculté de médecine de l’Université de Virginie-Occidentale, départements de performance humaine et de recherche. Exercice physiologiqueLe Département de Neurosciences et le RNI ont mené des études similaires sur l’anatomie de la moelle épinière chez les quadrupèdes. Les nouvelles découvertes montrent à quel point l’anatomie de la moelle épinière est conservée chez les animaux et à quel point elle reflète les actions musculaires.

Les résultats d’une étude scientifique appliquée qui peuvent être utilisés au bénéfice des patients en milieu clinique sont ce qui, selon Taitano, l’a attirée vers le projet.

« Je pense que nous pouvons obtenir beaucoup d’informations à partir d’études non chirurgicales », a déclaré Taitano, diplômé en génie biomédical. « Maintenant que nous pouvons appliquer ces résultats à l’échelle millimétrique et nanométrique, nous pouvons créer des dispositifs permettant d’appliquer ce que nous voyons dans un modèle comme celui-ci. »

Une fois le projet terminé, Taitano passera à la partie médecine de son programme cet été.

READ  Comment regarder SpaceX lancer sa première mission entièrement civile

« Les antécédents de Rachel ont été très utiles au succès de l’étude », a déclaré Gritsenko. « J’aimerais certainement voir davantage de ce type de collaboration interdisciplinaire avec des étudiants diplômés travaillant sur des projets avec des collègues des départements de médecine et d’ingénierie.

En plus de la subvention du ministère de la Défense, des scientifiques de deux autres universités ont exprimé leur intérêt pour l’utilisation du modèle pour explorer la manière d’améliorer la technologie catalytique, a déclaré Gritsenko. Elle prévoit également de collaborer avec un chercheur principal d’une autre université pour valider les résultats de l’étude sur des modèles animaux.

« Nous voulons faire un test de stimulation musculaire basé sur les prédictions du modèle et voir si nous obtenons les résultats escomptés », a-t-elle déclaré. « Nous pouvons essayer cela d’abord avec des singes, puis, si cela fonctionne, nous pouvons l’essayer chez l’homme pour vérifier davantage qu’il s’agit d’un bon modèle pour guider ces interventions chirurgicales. »

référence: Taitano RI, Yakovenko S, Gritsenko V. L’anatomie musculaire se reflète dans l’organisation spatiale des groupes de motoneurones spinaux. Commune Byul. 2024;7(1):1-11. est ce que je: 10.1038/s42003-023-05742-s

Cet article a été republié ci-dessous Matiéres. Remarque : Le matériel peut avoir été modifié en termes de longueur et de contenu. Pour plus d’informations, veuillez contacter la source susmentionnée. Vous pouvez accéder à notre politique de communiqués de presse ici.

Continue Reading

Trending

Copyright © 2023