Connect with us

science

Les scientifiques sont déconcertés par les matériaux les plus durs sur Terre – une « torsion inattendue »

Published

on

Les scientifiques sont déconcertés par les matériaux les plus durs sur Terre – une « torsion inattendue »
Fractures de la structure cristalline

Les images générées par microscopie montrent l’évolution de la fracture et la déformation qui l’accompagne de la structure cristalline dans un alliage CrCoNi à l’échelle nanométrique lors d’un test de contrainte à 20 K (-424 ° F). La fracture s’étend de gauche à droite. Crédit : Robert Ritchie/Berkeley Lab

Une nouvelle étude révèle les propriétés profondes d’un simple métal[{ » attribute= » »>alloy.

Scientists have measured the highest toughness ever recorded, of any material, while investigating a metallic alloy made of chromium, cobalt, and nickel (CrCoNi). Not only is the metal extremely ductile – which, in materials science, means highly malleable – and impressively strong (meaning it resists permanent deformation), its strength and ductility improve as it gets colder. This runs counter to most other materials in existence.

“In the same units, the toughness of a piece of silicon is one, the aluminum airframe in passenger airplanes is about 35, and the toughness of some of the best steels is around 100. So, 500, it’s a staggering number.” — Robert Ritchie

The team, led by researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and Oak Ridge National Laboratory, published a study describing their record-breaking findings in the journal Science on December 1, 2022.

“When you design structural materials, you want them to be strong but also ductile and resistant to fracture,” said project co-lead Easo George, the Governor’s Chair for Advanced Alloy Theory and Development at ORNL and the University of Tennessee. “Typically, it’s a compromise between these properties. But this material is both, and instead of becoming brittle at low temperatures, it gets tougher.”

CrCoNi is a subset of a class of metals called high entropy alloys (HEAs). All the alloys in use today contain a high proportion of one element with lower amounts of additional elements added, but HEAs are made of an equal mix of each constituent element. These balanced atomic recipes appear to bestow some of these materials with an extraordinarily high combination of strength and ductility when stressed, which together make up what is termed “toughness.” HEAs have been a hot area of research since they were first developed about 20 years ago, but the technology required to push the materials to their limits in extreme tests was not available until recently.

Grain Structures and Crystal Lattice Orientations

“The toughness of this material near liquid helium temperatures (20 kelvin, -424 °Fahrenheit) is as high as 500 megapascals square root meters. In the same units, the toughness of a piece of silicon is one, the aluminum airframe in passenger airplanes is about 35, and the toughness of some of the best steels is around 100. So, 500, it’s a staggering number,” said research co-leader Robert Ritchie, a senior faculty scientist in Berkeley Lab’s Materials Sciences Division and the Chua Professor of Engineering at UC Berkeley.

Ritchie and George began experimenting with CrCoNi and another alloy that also contains manganese and iron (CrMnFeCoNi) nearly a decade ago. They created samples of the alloys then lowered the materials to liquid nitrogen temperatures (around 77 kelvin, or -321 °F) and discovered impressive strength and toughness. They immediately wanted to follow up their work with tests at liquid helium temperature ranges, but finding facilities that would enable stress testing samples in such a cold environment, and recruiting team members with the analytical tools and experience needed to analyze what happens in the material at an atomic level took the next 10 years. Thankfully, the results were worth the wait.

Peering into the crystal

Many solid substances, including metals, exist in a crystalline form characterized by a repeating 3D atomic pattern, called a unit cell, that makes up a larger structure called a lattice. The material’s strength and toughness, or lack thereof, come from physical properties of the lattice. No crystal is perfect, so the unit cells in a material will inevitably contain “defects,” a prominent example being dislocations – boundaries where undeformed lattice meets up with deformed lattice. When force is applied to the material – think, for example, of bending a metal spoon – the shape change is accomplished by the movement of dislocations through the lattice. The easier it is for the dislocations to move, the softer the material is. But if the movement of the dislocations is blocked by obstacles in the form of lattice irregularities, then more force is required to move the atoms within the dislocation, and the material becomes stronger. On the flip side, obstacles usually make the material more brittle – prone to cracking.

“We were able to visualize this unexpected transformation due to the development of fast electron detectors in our electron microscopes, which allow us to discern between different types of crystals and quantify the defects inside them at the resolution of a single nanometer – the width of just a few atoms – which as it turns out, is about the size of the defects in deformed NiCoCr structure.” — Andrew Minor

Using neutron diffraction, electron backscatter diffraction, and transmission electron microscopy, Ritchie, George, and their colleagues at Berkeley Lab, the University of Bristol, Rutherford Appleton Laboratory, and the University of New South Wales examined the lattice structures of CrCoNi samples that had been fractured at room temperature and 20 K. (For measuring strength and ductility, a pristine metal specimen is pulled until it fractures, whereas for fracture toughness tests, a sharp crack is intentionally introduced into the sample before it is pulled and the stress needed to grow the crack is then measured.)

The images and atomic maps generated from these techniques revealed that the alloy’s toughness is due to a trio of dislocation obstacles that come into effect in a particular order when force is applied to the material. First, moving dislocations cause areas of the crystal to slide away from other areas that are on parallel planes. This movement displaces layers of unit cells so that their pattern no longer matches up in the direction perpendicular to the slipping movement, creating a type of obstacle. Further force on the metal creates a phenomenon called nanotwinning, wherein areas of the lattice form a mirrored symmetry with a boundary in between. Finally, if forces continue to act on the metal, the energy being put into the system changes the arrangement of the unit cells themselves, with the CrCoNi atoms switching from a face-centered cubic crystal to another arrangement known as hexagonal close packing.

This sequence of atomic interactions ensures that the metal keeps flowing, but also keeps meeting new resistance from obstacles far past the point that most materials snap from the strain. “So as you are pulling it, the first mechanism starts and then the second one starts, and then the third one starts, and then the fourth,” explained Ritchie. “Now, a lot of people will say, well, we’ve seen nanotwinning in regular materials, we’ve seen slip in regular materials. That’s true. There’s nothing new about that, but it’s the fact they all occur in this magical sequence that gives us these really tremendous properties.”

The team’s new findings, taken with other recent work on HEAs, may force the materials science community to reconsider long-held notions about how physical characteristics give rise to performance. “It’s amusing because metallurgists say that the structure of a material defines its properties, but the structure of the NiCoCr is the simplest you can imagine – it’s just grains,” said Ritchie. “However, when you deform it, the structure becomes very complicated, and this shift helps explain its exceptional resistance to fracture,” added co-author Andrew Minor, director of the National Center of Electron Microscopy facility of the Molecular Foundry at Berkeley Lab and Professor of Materials Science and Engineering at UC Berkeley. “We were able to visualize this unexpected transformation due to the development of fast electron detectors in our electron microscopes, which allow us to discern between different types of crystals and quantify the defects inside them at the resolution of a single nanometer – the width of just a few atoms – which as it turns out, is about the size of the defects in deformed NiCoCr structure.”

The CrMnFeCoNi alloy was also tested at 20 kelvin and performed impressively, but didn’t achieve the same toughness as the simpler CrCoNi alloy.

Forging new products

Now that the inner workings of the CrCoNi alloy are better understood, it and other HEAs are one step closer to adoption for special applications. Though these materials are expensive to create, George foresees uses in situations where environmental extremes could destroy standard metallic alloys, such as in the frigid temperatures of deep space. He and his team at Oak Ridge are also investigating how alloys made of more abundant and less expensive elements – there is a global shortage of cobalt and nickel due to their demand in the battery industry – could be coaxed into having similar properties.

Though the progress is exciting, Ritchie warns that real-world use could still be a ways off, for good reason. “When you are flying on an airplane, would you like to know that what saves you from falling 40,000 feet is an airframe alloy that was only developed a few months ago? Or would you want the materials to be mature and well understood? That’s why structural materials can take many years, even decades, to get into real use.”

Reference: “Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin” by Dong Liu, Qin Yu, Saurabh Kabra, Ming Jiang, Paul Forna-Kreutzer, Ruopeng Zhang, Madelyn Payne, Flynn Walsh, Bernd Gludovatz, Mark Asta, Andrew M. Minor, Easo P. George and Robert O. Ritchie, 1 December 2022, Science.
DOI: 10.1126/science.abp8070

This research was supported by the Department of Energy’s Office of Science. The low-temperature mechanical testing and neutron diffraction was performed at the ENGIN-X ISIS Facility at the Rutherford Appleton Laboratory, led by first author Dong Liu. Microscopy was performed at the National Center for Electron Microscopy at the Molecular Foundry, a DOE Office of Science user facility at Berkeley Lab. The other authors on this project were Qin Yu, Saurabh Kabra, Ming Jiang, Joachim-Paul Forna-Kreutzer, Ruopeng Zhang, Madelyn Payne, Flynn Walsh, Bernd Gludovatz, and Mark Asta.

READ  Capturez tout ce qui brille dans les galaxies
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le chef de l’Agence spatiale américaine veut parler avec la Chine des débris spatiaux

Published

on

Le chef de l’Agence spatiale américaine veut parler avec la Chine des débris spatiaux

29 août 2024

Le chef du commandement spatial américain espère que la prochaine fois que la Chine lancera un missile laissant derrière elle des débris spatiaux de longue durée, Pékin avertira Washington à l’avance, plutôt que de laisser les États-Unis découvrir par eux-mêmes le chaos orbital.

Parlez dans L’efficacité du Mitchell Institute for Aerospace Studies Lors d’une réunion à la base spatiale Peterson, au Colorado, le 28 août, le général Stephen N. Whiting a souligné deux incidents récents impliquant des débris spatiaux chinois comme étant une source de préoccupation et la nécessité d’améliorer la communication à l’avenir.

« Nous venons de voir le lancement de leur version de Constellation du soleil « Cela a laissé plus de 300 débris en orbite – une fusée Longue Marche 6A », a déclaré Whiting. « Il y a moins de deux ans, ils avaient une autre fusée, qui a mis plus de 500 débris à longue durée de vie… J’espère que la prochaine fois. que « Dans un missile comme celui-ci, il laisse beaucoup de débris. Ce ne sont pas nos capteurs qui détectent cela en premier, mais nous obtenons des communications qui nous aident à comprendre cela, tout comme nous communiquons avec les autres. »

L’incident le plus récent impliquant une fusée Longue Marche 6A s’est produit au début du mois, lorsque le lanceur transportait les 18 premiers satellites d’une constellation de communications prévue pour rivaliser avec Starlink. La fusée s’est brisée en orbite terrestre basse (LEO) quelques jours plus tard, répandant des débris et suscitant des inquiétudes parmi les experts. La société privée de suivi spatial a rapporté que la désintégration pourrait produire plus de 10… 900 épaves shrapnel.

READ  Capturez tout ce qui brille dans les galaxies
Missile Longue Marche 6 modifié. Image de la China Aerospace Science and Technology Corporation

Whiting a noté que les débris provenaient de l’étage supérieur de la fusée après le lancement des satellites, indiquant que la mission était « généralement réussie ». Cependant, à des altitudes plus élevées, les débris resteront en orbite plus longtemps.

« Nous ne voulons certainement pas voir ce genre de débris », a ajouté Whiting.

Les débris se trouvent généralement sur des orbites inférieures à 600 km (373 miles). Il revient sur Terre après quelques annéesÀ une altitude de 800 km, sa décomposition peut prendre des siècles. Avec de plus en plus de satellites en orbite terrestre basse et des débris persistants provenant de lancements peu judicieux, La probabilité de collisions continue d’augmenter.

Selon le général à la retraite Kevin Shelton, directeur du Centre d’excellence sur l’énergie spatiale du Mitchell Institute, les États-Unis ont déjà eu des problèmes similaires avec des débris à haute altitude, mais ont commencé à évacuer le carburant et les gaz des étages de fusée avant d’entrer en orbite. Cette pratique réduisait les débris et le risque de désintégration, et la Russie l’adopta peu après. Whiting a déclaré qu’on ne savait pas actuellement si la Chine utilisait cette méthode.

« Depuis des décennies, les États-Unis s’intéressent tellement à l’espace que nous avons mis la grande majorité de nos données de suivi à la disposition du monde entier », a déclaré Whiting. « Chaque jour, nous analysons tous les satellites actifs à la recherche de tous ces débris, et nous en informons tout le monde, y compris les Chinois et les Russes… parce que nous ne voulons pas que les satellites heurtent des débris et laissent derrière eux d’autres débris. »

READ  La perte de la Russie est le gain du Royaume-Uni pour le spectromètre infrarouge du rover martien

Le développement rapide des capacités spatiales et l’augmentation significative des déploiements de satellites par la Chine et la Russie restent une préoccupation majeure quant à la manière dont les États-Unis abordent le domaine spatial. Chef adjoint des opérations spatiales, le général Michael A. Gotlin a souligné que les récentes mesures prises par ces pays prouvent leur intention d’opérer de manière dangereuse dans ce domaine.

« Ils créent beaucoup de débris et d’orbites que nous devons contourner, ou ils mettent en danger des choses comme la Station spatiale internationale », a déclaré Gotlin lors du Sommet AFCEA/INSA sur le renseignement et la sécurité nationale à Rockville, Maryland, le 28 août. Il a ajouté : « Ils ne se soucient même pas de la sécurité des astronautes. Si ce n’est pas dangereux et non professionnel, je ne sais pas ce que c’est. »

En novembre 2021, la Russie a procédé à un test de missile antisatellite, aboutissant à la création d’un Grande quantité de débris En orbite terrestre basse, ce qui présente un danger pour la Station spatiale internationale et incite l’équipage à prendre des mesures de précaution. En outre, Moscou a également été témoin Une série de fuites de liquide de refroidissement Ces dernières années, la Chine a lancé son propre vaisseau spatial. Même s’il n’y a pas de négociations prévues avec la Russie sur le développement spatial, les espoirs sont grands d’une communication plus active avec Pékin sur les alertes spatiales.

« Nous donnons ces avis aux Chinois, et au cours de l’année dernière, nous avons vu à plusieurs reprises qu’ils nous ont donné quelques avis en retour, et je pense que c’est une chose positive. Nous n’avons aucune discussion. prévu avec la Russie », a déclaré Whiting.

READ  La pénurie d'oxygène liquide induite par la pandémie affecte les calendriers de lancement - Spaceflight Now

Continue Reading

science

À la recherche de pierres précieuses : caractérisation de six planètes géantes en orbite autour de naines froides

Published

on

À la recherche de pierres précieuses : caractérisation de six planètes géantes en orbite autour de naines froides
À la recherche de pierres précieuses : caractérisation de six planètes géantes en orbite autour de naines froides

Données d’imagerie à contraste élevé pour toutes les cibles. Dans chaque panneau, nous montrons la limite de contraste de 5σ atteinte en fonction de la séparation angulaire de l’étoile hôte pour chaque ensemble de données à contraste élevé. Nous traçons également des cachets postaux de 1,4″ × 1,4″ d’images NESSI reconstruites en bande z (encadré à droite dans chaque panneau) pour toutes les cibles et des images AO (encarts à gauche) pour TOI-5414, TOI-5616, TOI-5634A et TOI-6034. — astro-ph.EP

Les exoplanètes géantes transitant autour d’étoiles naines de type M (GEMS) sont rares, en raison de la faible masse de leurs étoiles hôtes. Cependant, la couverture de l’ensemble du ciel par TESS a permis d’en détecter un nombre croissant pour permettre des enquêtes statistiques telles que le GEMS Search Survey.

Dans le cadre de cet effort, nous décrivons les observations de six planètes géantes en transit, qui incluent des mesures de masse précises pour deux GEMS (K2-419Ab, TOI-6034b) et une validation statistique de quatre systèmes, qui incluent une vérification et des limites de masse supérieures pour trois d’entre elles. (TOI-5218b, TOI-6034b). 5616b, TOI-5634Ab), tandis que le quatrième système – TOI-5414b – est classé comme « planète potentielle ».

Nos observations incluent les vitesses radiales du Habitable Zone Planet Finder sur le télescope Hobby-Eberly et de l’observatoire Maroon-X sur Gemini-North, ainsi que la photométrie et l’imagerie à contraste élevé provenant de plusieurs installations au sol. En plus de la photométrie TESS, K2-419Ab a également été observé et validé statistiquement dans le cadre de la mission K2 au cours des campagnes 5 et 18, qui fournit des contraintes orbitales et planétaires précises malgré la faible luminosité de l’étoile hôte et la longue période orbitale d’environ 20,4 jours.

READ  La perte de la Russie est le gain du Royaume-Uni pour le spectromètre infrarouge du rover martien

Avec une température d’équilibre de seulement 380 K, K2-419Ab est l’une des planètes en transit les plus froides et les mieux caractérisées connues. TOI-6034 a un compagnon tardif de type F à environ 40 secondes d’arc, ce qui en fait la première étoile hôte GEMS à avoir un ancien compagnon binaire sur la séquence principale. Ces confirmations s’ajoutent au petit échantillon existant de planètes en transit GEMS confirmées.

Shubham Kanodia, Arvind F. Gupta, Caleb I. Canas, Lea Marta Bernabo, Varghese Reggie, T. Hahn, Madison Brady, Andreas Seyfart, William D. Cochrane, Nydia Morrell, Ritvik Basant, Jacob Bean et Chad F. Bender, Zoé L. De Bors, Alison Perella, Alexina Birkholz, Nina Brown, Franklin Chapman, David R. Ciardi, Catherine A. Clark, Ethan J. Cotter, Scott A. Diddams, Samuel Halverson, Susan Hawley, Leslie Hebb, Ray Holcomb, Steve B. Howell, Henry A. Kobolnicki, Adam F. Kowalski, Alexander Larsen, Jessica Libby Roberts, Andrea S. J. Lin, Michael B. Lund, Raphael Locke, Andrew Munson, Joe B. Ninan, Brooke A. Parker, Nishka Patel, Michael Rudrak, Gabrielle Ross, Arpita Roy, Christian Schwab, Jomundur Stefansson, Aubrey Thoms, Andrew Vanderberg

Commentaires : Accepté dans AJ
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP)
Citer ce qui suit : arXiv:2408.14694 [astro-ph.EP] (ou arXiv :2408.14694v1 [astro-ph.EP] (pour cette version)
https://doi.org/10.48550/arXiv.2408.14694
Concentrez-vous pour en savoir plus
Date de publication
De : Shubham Kanodia
[v1] Lundi 26 août 2024, 23:47:24 UTC (5 169 Ko)
https://arxiv.org/abs/2408.14694

Astrobiologie

Continue Reading

science

La Federal Aviation Administration des États-Unis a immobilisé les fusées Falcon 9 de SpaceX dans l’attente d’une enquête sur un rare accident d’atterrissage au large des côtes.

Published

on

La Federal Aviation Administration des États-Unis a immobilisé les fusées Falcon 9 de SpaceX dans l’attente d’une enquête sur un rare accident d’atterrissage au large des côtes.

La Federal Aviation Administration a immobilisé les fusées Falcon 9 de SpaceX en attendant une enquête visant à déterminer pourquoi le propulseur du premier étage s’est arrêté. Collision avec un bateau de débarquement tôt mercredi après avoir contribué au lancement d’un autre lot de satellites Internet Starlink.

après Se lever Après avoir reporté mardi soir le lancement du vaisseau spatial avec équipage Polaris Dawn en raison de prévisions météorologiques à long terme défavorables, SpaceX a continué à travailler sur le premier des lancements consécutifs de satellites Starlink, un depuis la Floride et un depuis la Californie.

Mais le deuxième vol a été annulé après que le premier étage utilisé lors du lancement en Floride s’est brisé et est tombé dans l’océan Atlantique alors qu’il tentait d’atterrir sur un drone SpaceX stationné à des centaines de kilomètres au nord-est de Cap Canaveral.

Une image à exposition temporelle capture la trajectoire enflammée d'une fusée Falcon 9 alors qu'elle s'éloigne de la station spatiale de Cap Canaveral tôt mercredi pour un vol visant à déployer 21 satellites Internet Starlink.
Une image à exposition temporelle montre la trajectoire enflammée d’une fusée Falcon 9 alors qu’elle s’éloignait de la station spatiale de Cap Canaveral tôt mercredi pour un vol visant à déployer 21 satellites Internet Starlink. Cette photo a été prise depuis le Pad 39A du Kennedy Space Center voisin, où la mission Polaris Dawn attend son lancement sur un vol commercial comportant la première sortie dans l’espace non gouvernementale. Ce vol est désormais suspendu dans l’attente d’une enquête sur les raisons pour lesquelles le premier étage d’une fusée Starlink s’est brisé lors de l’atterrissage sur un drone SpaceX au large des côtes.

EspaceX


La FAA a déclaré qu’elle ordonnerait une enquête, immobilisant efficacement les fusées Falcon 9 de SpaceX – y compris la fusée Polaris Dawn – jusqu’à ce que l’enquête soit terminée et que les mesures correctives soient approuvées.

« Le retour en vol de la fusée Falcon 9 dépend de la détermination par la FAA que tout système, processus ou procédure lié à l’anomalie n’a pas d’impact sur la sécurité publique », a déclaré la FAA dans un communiqué.

« En outre, SpaceX devra peut-être demander et obtenir l’approbation de la FAA pour modifier sa licence qui inclut des actions correctives et satisfaire à toutes les autres exigences de licence », a ajouté l’agence.

Mardi soir, SpaceX a reporté un lancement prévu mercredi Mission Aube PolarisLe lancement d’un vol commercial comprenant la première sortie dans l’espace par une organisation non gouvernementale a été reporté à vendredi au plus tôt en raison des conditions météorologiques attendues à la fin de la mission. Le lancement a été suspendu indéfiniment dans l’attente d’une enquête sur l’accident à l’atterrissage.

L’échec de l’atterrissage a mis fin à une séquence de 267 récupérations consécutives réussies de boosters remontant à février 2021. Cependant, le deuxième étage de la fusée Falcon 9 a réussi à transporter 21 satellites Starlink sur leur orbite prévue.

L’atterrissage du premier étage semblait normal jusqu’au moment de l’atterrissage, lorsque plus de flammes que d’habitude sont apparues autour de la base de la fusée à l’approche du pont de la fusée. L’une des jambes d’atterrissage s’est effondrée immédiatement après l’atterrissage et la fusée d’appoint, masquée par le feu et la fumée, s’est renversée par-dessus le côté de la péniche de débarquement dans l’océan Atlantique.

Une caméra montée sur le premier étage d'une fusée Falcon 9 a capturé une vue du drone
Une caméra montée sur le premier étage d’une fusée Falcon 9 a capturé une vue du « manque de gravité » du drone quelques instants avant l’atterrissage. Une caméra sur le drone montre le pont d’atterrissage éclairé par les gaz d’échappement de la fusée alors qu’elle s’approche du navire.

EspaceX


Au moment de l'atterrissage, un incendie s'est déclaré et l'une des jambes d'atterrissage s'est effondrée.
Au moment de l’atterrissage, un incendie s’est déclaré et l’une des jambes d’atterrissage s’est effondrée.

EspaceX


Le missile est ensuite tombé dans l'océan Atlantique.
Le missile est ensuite tombé dans l’océan Atlantique.

EspaceX


« Après une ascension réussie, le premier étage d’une fusée Falcon 9 s’est retourné après son atterrissage sur le vaisseau spatial sans pilote ‘Zero Gravity' », SpaceX Il a dit sur les réseaux sociaux« Les équipes évaluent les données de vol et l’état du missile. »

Il s’agissait du 23e premier étage de la fusée B1062, qui s’est avéré être son dernier lancement et atterrissage, un nouveau record de réutilisabilité. SpaceX autorise les premiers étages de la fusée Falcon 9 pour un maximum de 40 vols par étage.

Peu de temps après le déploiement des satellites Starlink en Floride, la société a annulé le lancement en Californie, qui était prévu à 5 h 58 HAE, pour donner aux ingénieurs plus de temps pour examiner la télémétrie et les séquences vidéo, à la recherche de tout signe de problème. affecter d’autres missiles.

« Retrait de notre deuxième lancement @Starlink la nuit pour donner à l’équipe le temps d’examiner les données d’atterrissage du booster du lancement précédent », a déclaré SpaceX. Il a dit« Une nouvelle date de lancement cible sera partagée une fois disponible. »

READ  Un vaisseau spatial de la NASA vient de voir pour la première fois le pôle nord de l'Europe, la lune glacée de Jupiter.
Continue Reading

Trending

Copyright © 2023