Une étude a révélé qu’un composé artificiel, administré à des souris à bord de la Station spatiale internationale, a efficacement contrecarré la perte osseuse typique des voyages dans l’espace. Ce développement innovant est non seulement prometteur pour les astronautes confrontés à une exposition prolongée à la microgravité, mais offre également des avantages potentiels sur Terre dans des conditions telles que l’ostéoporose sévère.
De nouvelles recherches ont montré l’efficacité d’un composé modifié pour prévenir la perte osseuse chez les souris voyageant dans l’espace. Cette avancée pourrait offrir des solutions aux astronautes et aux patients atteints d’ostéoporose sur Terre.
Une nouvelle étude publiée aujourd’hui (18 septembre) dans le Nature Partner Journal, Microgravité npjtrouve un composé technique donné aux souris sur le navire Station spatiale internationale (ISS) a largement évité la perte osseuse associée au temps passé dans l’espace. L’étude, menée par une équipe multidisciplinaire de professeurs de l’Université de Californie à Los Angeles (UCLA) et du Forsyth Institute de Cambridge, Massachusetts, met en évidence un traitement prometteur pour atténuer la perte osseuse sévère due aux voyages spatiaux à long terme ainsi que les problèmes musculo-squelettiques. dégénérescence. sur la terre.
L’effet de la microgravité sur les os
La perte osseuse induite par la microgravité constitue depuis longtemps une préoccupation majeure pour les missions spatiales de longue durée. La réduction de la charge mécanique due à la microgravité entraîne une perte osseuse 12 fois supérieure à celle sur Terre. Les astronautes en orbite terrestre basse peuvent subir une perte osseuse allant jusqu’à 1 % par mois, compromettant la santé du squelette des astronautes et augmentant le risque de fractures lors de longs vols spatiaux et plus tard dans la vie.
Les solutions actuelles et leurs limites
Actuellement, la stratégie visant à atténuer la perte osseuse repose sur la charge mécanique induite par l’exercice pour favoriser la formation osseuse, mais elle est loin d’être idéale pour les membres d’équipage qui passent jusqu’à six mois en microgravité. L’exercice n’empêche pas toujours la perte osseuse, prend un temps précieux pour le personnel et peut être contre-indiqué dans certains types de blessures.
La nouvelle étude a examiné si l’administration systémique de la molécule 1 de type NELL (NELL-1) pouvait réduire la perte osseuse induite par la microgravité. Dirigé par Chia Su, MD, vice-président de la recherche à la Division de chirurgie plastique et reconstructive et professeur aux départements de chirurgie et d’orthopédie de Université de Californie École de médecine David Geffen. NELL-1, découvert par Kang Ting, DMD, DMSc au Forsyth Institute, est essentiel à la croissance osseuse et au maintien de la densité osseuse. Le professeur Ting a également dirigé plusieurs études démontrant que l’administration topique de NELL-1 peut régénérer les tissus musculo-squelettiques tels que les os et le cartilage.
Techniques de livraison avancées
La livraison systématique de NELL-1 à bord de l’ISS oblige l’équipe à réduire le nombre d’injections. Bin Wu, DDS, PhD, et Yulong Zhang, PhD, du Forsyth Institute, ont amélioré le potentiel thérapeutique de NELL-1 en prolongeant la demi-vie de la molécule de 5,5 heures à 15,5 heures sans perte de bioactivité et en la bioconjuguant avec bisphosphonate inactif (BP) pour créer la « molécule Smart BP-NELL-PEG qui cible plus spécifiquement le tissu osseux sans les effets nocifs courants de la BP.
La molécule modifiée a ensuite été évaluée de manière approfondie par les équipes de Soo et Ting pour déterminer l’efficacité et la sécurité du BP-NELL-PEG sur Terre. Ils ont constaté que BP-NELL-PEG présentait une spécificité supérieure pour le tissu osseux sans provoquer d’effets indésirables notables.
Résultats et applications pratiques
Pour garantir l’applicabilité pratique du BP-NELL-PEG dans des conditions spatiales réelles, les chercheurs ont travaillé avec le Centre pour l’avancement de la science dans l’espace (CASIS) et la National Aeronautics and Space Administration (CASIS).NASA) Ames se prépare largement pour EspaceX La mission CRS-11 vers la Station spatiale internationale, où les astronautes Peggy Whitson, Ph.D., et Jack D. Fisher, études MS. La moitié des souris de l’ISS ont été exposées à la microgravité (« vol LAR ») pendant une période prolongée de 9 semaines pour simuler les défis d’un voyage spatial de longue durée, tandis que les souris restantes ont été ramenées sur Terre 4,5 semaines après le lancement, le premier retour de un animal vivant jamais connu (« vol LAR ») pour les rats dans l’histoire des États-Unis. Les groupes TERM et LAR Flight ont été traités avec du BP-NELL-PEG ou une solution saline tamponnée au phosphate (PBS). Un groupe équivalent de souris est resté au Kennedy Space Center et a été traité de la même manière avec BP-NELL-PEG ou PBS pour servir de contrôles gravitationnels normaux (« sol »).
Les souris volantes et terrestres traitées avec BP-NELL-PEG ont montré une augmentation significative de la formation osseuse. Les souris traitées dans l’espace et sur Terre n’ont montré aucun effet néfaste évident sur la santé.
Conclusions et orientations futures
« Nos résultats sont extrêmement prometteurs pour l’avenir de l’exploration spatiale, en particulier pour les missions qui impliquent de longs séjours en microgravité », a déclaré l’auteur principal de l’étude, Xia Su. « S’il est prouvé par des études humaines, le BP-NELL-PEG pourrait être un outil prometteur pour lutter contre la perte osseuse et la détérioration musculo-squelettique, en particulier lorsque l’entraînement en résistance traditionnel n’est pas possible en raison de blessures ou d’autres facteurs invalidants », a déclaré le co-chercheur principal. , Kang Ting.
« Cette stratégie de bio-ingénierie pourrait également avoir des avantages importants sur Terre, en offrant un traitement potentiel aux patients souffrant d’ostéoporose sévère et d’autres affections osseuses », a déclaré Bin Wu, co-chercheur principal.
» Dans la prochaine étape, Pin Ha, MD, DDS, MS, scientifique du projet UCLA, supervise l’analyse des données de retour d’animaux vivants. » Nous espérons que cela fournira des informations sur la manière d’aider les futurs astronautes à se remettre de missions spatiales de longue durée. « , a déclaré Chia Su. .
Référence : « La conjugaison des bisphosphonates améliore la spécificité osseuse de la thérapie systémique basée sur NELL-1 pour la perte osseuse induite par les vols spatiaux chez la souris » 18 septembre 2023, Microgravité npj. est ce que je: 10.1038/s41526-023-00319-7
La recherche est soutenue par des subventions de CASIS et Instituts nationaux de la santé. Un financement et un soutien supplémentaires sont fournis par le département de chirurgie plastique et reconstructive de l’UCLA, le département de chirurgie de l’UCLA, le département de chirurgie orthopédique de l’UCLA, le centre de recherche de l’hôpital orthopédique de l’UCLA, l’American Society of Orthodontics et la Fondation internationale pour l’orthodontie. Pin Ha, Yulong Zhang et le professeur adjoint Jin Hee Kwak, DDS, sont co-auteurs et ont contribué à parts égales à ce projet.
La Mars Society est sur le point de tenir sa conférence annuelle, en personne et en ligne, et vous pouvez regarder le tout virtuellement en vous inscrivant.
Vingt-sixième édition internationale Mars La conférence communautaire débute jeudi 5 octobre à l’Arizona State University à Tempe. La réunion comprend une liste d’orateurs qui parlent de sujets d’actualité Missions sur MarsTâches analogiques et plans pour l’avenir.
L’événement se déroulera quotidiennement jusqu’au dimanche (8 octobre) et les informations d’inscription seront disponibles Disponible sur cette page, gracieuseté de la Mars Society. Il y aura une diffusion en direct gratuite et accessible au public de l’événement, mais les inscrits pourront accéder aux événements en direct.
à propos de:« Nous devons aller sur Mars avant que je meure. » Lisez un extrait exclusif de « Elon Musk » du biographe Walter Isaacson
« L’événement de cette année se concentrera sur le thème » Mars pour tous « », ont écrit les représentants de la Mars Society dans un communiqué. « Alors que l’intérêt mondial et le soutien du public pour les humains sur Mars augmentent, les défenseurs de cette entreprise – y compris la Mars Society – ont développé une série d’initiatives qui permettent aux membres du public d’en apprendre davantage sur, et même d’expérimenter, l’idée d’établissement humain. sur Mars. » Planète rouge. »
Des outils en ligne permettront aux participants virtuels de soumettre des questions aux intervenants, de se connecter avec d’autres participants et de regarder la diffusion en direct. Il y aura également une démonstration en direct de MarsVR, une plateforme de réalité virtuelle open source de la Mars Society « qui peut être utilisée pour des recherches et des formations sérieuses dans le but d’envoyer des humains sur Mars ».
Une nébuleuse rouge rosé occupe le devant de la scène dans une nouvelle image de l’Observatoire européen austral (ESO).
Le nuage en expansion de poussière et de gaz, connu sous le nom d’IC1284, est une émission nébuleuseUn nuage lumineux et diffus de gaz ionisé qui émet sa propre lumière. Cette nébuleuse en émission, au centre de l’image, brille en rouge à cause de l’activité une étoile Formation et fusion d’hydrogène dans la région.
« Sa lueur rose provient des électrons des atomes d’hydrogène : ils sont excités par le rayonnement des jeunes étoiles, mais perdent ensuite de l’énergie et émettent une certaine couleur ou longueur d’onde de lumière », ont déclaré les responsables de l’ESO. Il a dit dans un communiqué.
à propos de: Vues époustouflantes de l’espace depuis le très grand télescope de l’ESO (photos)
Les astronomes ont photographié IC1284 à l’aide de la caméra grand champ de l’ESO, appelée OmegaCAM, sur le télescope d’enquête VLT (VST) en Observatoire du Paranal Au Chili. (VLT signifie « Very Large Telescope ».) Les nébuleuses sont composées d’énormes nuages de poussière et de gaz, qui alimentent le processus de formation de nouvelles étoiles. Sur la nouvelle image, la lueur rouge chaude d’IC1284 est entrecoupée d’étoiles scintillantes tout autour.
IC1284 est rejoint par deux nébuleuses à réflexion bleue, connues sous les noms de NGC6589 et NGC6590, situées dans le coin inférieur droit de la nouvelle image VST. Comparés aux nébuleuses par émission, les nuages de poussière interstellaire dans les nébuleuses par réflexion reflètent la lumière d’une ou plusieurs étoiles proches, créant la couleur bleue caractéristique observée.
« Poussière en réflexion nébuleuse « Les longueurs d’onde plus courtes et plus bleues sont préférentiellement diffusées par les étoiles proches, ce qui donne à ces nébuleuses leur étrange lueur », expliquent les responsables de l’ESO dans le communiqué. « C’est la même raison pour laquelle le ciel est bleu ! »
La nouvelle photo, publiée mardi 2 octobre, a été prise dans le cadre d’une initiative plus large organisée par elle. Éso, appelée VST H alpha Survey of the Southern Galactic Level and Swell (VPHAS+). L’enquête vise à observer les nébuleuses et les étoiles en lumière visible pour aider les astronomes à comprendre comment les étoiles naissent, vivent et meurent, selon le communiqué.
Représentation schématique du modèle de disque d’accrétion incliné. L’axe de rotation du trou noir est censé être droit de haut en bas dans cette illustration. La direction du jet est approximativement perpendiculaire au plan du disque. Le désalignement entre l’axe de rotation du trou noir et l’axe de rotation du disque fait tourner et projeter le disque. Crédit : Yuzhou Cui et al. (2023), Intouchable Lab@Openverse et Zhejiang Lab
Des chercheurs confirment la rotation de la galaxie massive M87 Le trou noir En surveillant l’oscillation dans son plan, à l’aide des données de deux décennies de radiotélescopes mondiaux. Cette découverte représente une avancée majeure dans l’étude des trous noirs.
Le trou noir supermassif au cœur de la galaxie M87, rendu célèbre par la première image de l’ombre d’un trou noir, a produit une autre première : il a été confirmé que les jets émanant du trou noir vacillaient, fournissant une preuve directe de l’existence du trou noir. Rotation.
Les trous noirs supermassifs, monstres des milliards de fois plus lourds que le soleil qui mangent tout ce qui les entoure, y compris la lumière, sont difficiles à étudier car aucune information ne peut s’échapper de l’intérieur. En théorie, il existe très peu de propriétés que nous pouvons espérer mesurer. Une propriété observable est la rotation, mais en raison des difficultés impliquées, il n’y a pas eu d’observations directes de la rotation du trou noir.
Deux décennies d’observations apportent des preuves
À la recherche de preuves de la rotation d’un trou noir, une équipe internationale a analysé les données d’observation de la galaxie M87 sur deux décennies. Située à 55 millions d’années-lumière en direction de la constellation de la Vierge, cette galaxie contient un trou noir 6,5 milliards de fois plus massif que le Soleil, le même trou noir qui a produit la première image de l’ombre d’un trou noir par le télescope Event Horizon ( ISE). ) en 2019. Le trou noir supermassif de M87 est connu pour avoir un disque d’accrétion, qui alimente le trou noir en matière, et un jet, dans lequel la matière est éjectée à proximité du trou noir à une vitesse proche de la vitesse de la lumière.
(Panneau supérieur) Cellule M87 à 43 GHz en moyenne tous les deux ans de 2013 à 2018. Les années correspondantes sont indiquées dans le coin supérieur gauche. Les flèches blanches indiquent l’angle de position du plan dans chaque sous-parcelle. (Panneau inférieur) Evolution observée de la tendance des jets entre 2000 et 2022. Les points verts et bleus ont été obtenus à partir d’observations aux fréquences 22 et 43 GHz. La ligne rouge représente une courbe sinusoïdale ajustée sur une période de 11 ans. Crédit : Yuzhou Cui et al. (2023)
L’équipe a analysé les données sur 170 périodes collectées par le réseau VLBI de l’Asie de l’Est (EAVN), le réseau de lignes de base très longues (VLBA), le réseau commun de KVN et VERA (KaVA) et le réseau presque mondial de l’Asie de l’Est vers l’Italie (EATING). ). Réseau VLBI Au total, plus de 20 radiotélescopes du monde entier ont contribué à cette étude.
Résultats et implications
Les résultats montrent que les interactions gravitationnelles entre le disque d’accrétion et la rotation du trou noir font osciller ou avancer la base du flux, de la même manière que les interactions gravitationnelles au sein du système solaire font bouger la Terre. L’équipe a réussi à relier la dynamique des flux au trou noir supermassif central, fournissant ainsi la preuve directe que le trou noir est effectivement en rotation. Le jet change de direction d’environ 10 degrés avec une précession de 11 ans, ce qui est cohérent avec les simulations théoriques du supercalculateur menées par ATERUI II à l’Observatoire astronomique national du Japon (NAOJ).
« Nous sommes satisfaits de ce résultat important », déclare Yuzhou Cui, auteur principal de l’article résumant les recherches qu’elle a commencées en tant qu’étudiante diplômée au NAOJ avant de rejoindre le laboratoire du Zhejiang en tant que chercheuse postdoctorale. « Étant donné que le désalignement entre le trou noir et le disque est relativement faible et que la période de précession est d’environ 11 ans, une collecte de données à haute résolution permettant de suivre la structure de M87 sur deux décennies et une analyse complète sont nécessaires pour obtenir ce résultat. »
« Après avoir réussi à visualiser le trou noir de cette galaxie grâce à l’EHT, la question de savoir si ce trou noir tourne ou non est devenue le principal intérêt des scientifiques », explique le Dr Kazuhiro Hada du NAOJ. « Maintenant, l’anticipation s’est transformée en certitude. Ce monstrueux trou noir est déjà en train de tourner. »
« Il s’agit d’une percée scientifique passionnante qui a finalement été révélée grâce à des années d’observations conjointes menées par une équipe internationale de chercheurs de 45 institutions à travers le monde, travaillant ensemble comme une seule équipe », a déclaré le Dr Motoki Kino de l’Université Kogakuin, coordinateur du projet VLBI. pour l’Asie de l’Est. Groupe de travail sur la science des noyaux galactiques du réseau actif. « Nos données d’observation s’adaptant parfaitement à une simple courbe sinusoïdale nous apportent de nouvelles avancées dans notre compréhension du trou noir et du système à réaction. »
Pour en savoir plus sur cette découverte, voir Vérification de la rotation d’un trou noir supermassif.
Référence : « La buse à jet se connectant à un trou noir rotatif dans M87 » par Yucho Kuei, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yusuke Mizuno, Hyunwook Ru, Markei Honma, Kono Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Chen, Evgenia Kravchenko, Juan Carlos Algaba, Xiaoping Cheng, Eli Zhou, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru Sin Lu, Kotaro Ninuma, Jungwan Oh, Ken Ohsuga, Satoko Sawada Satoh, Bong Won Son, Hiroyuki R . Takahashi, Meeko Takamura, Fumi Tazaki, Sasha Tripp, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Botaccio, Do Young-byun, Lang Kui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang Song Lee, Ji-Won Lee, Jeong-Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexei Melnikov, Carlo Migoni, Si-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Chung Chen, Jo-Yun Hwang, Dong-Kyu Jung, Heo-Ryung Kim, Jeong Suk Kim, Hideyuki Kobayashi, Bin Li, Guangwei Li, Xiaofei Li, Xiong Liu, Qinghui Liu, Xiang Liu, Chung Sik Oh, Tomoaki Aoyama, Duke Jiu Ruo, Jinqing Wang, Na Wang, Xiqiang Wang, Bo Xia, Hao Yan, Jae-hwan Yum, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongping Zhao, Yi Zhong, 27 septembre 2023, nature. est ce que je: 10.1038/s41586-023-06479-6