Connect with us

science

L’apprentissage automatique sera l’un des meilleurs moyens d’identifier les exoplanètes habitables

Published

on

L’apprentissage automatique sera l’un des meilleurs moyens d’identifier les exoplanètes habitables

Vue d’artiste d’un système multi-planétaire avec trois transits. crédit : Nasa

Le domaine des études sur les planètes extrasolaires est en pleine mutation. À ce jour, 4 940 exoplanètes ont été confirmées dans 3 711 systèmes planétaires, avec 8 709 autres candidats en attente de confirmation. Avec autant de planètes disponibles pour l’étude et les améliorations de la sensibilité des télescopes et de l’analyse des données, l’accent passe de la découverte à la caractérisation. Plutôt que de simplement rechercher d’autres planètes, les astrobiologistes examineront les mondes « potentiellement habitables » à la recherche d’éventuelles « empreintes digitales biologiques ».


Il s’agit des signatures chimiques associées à la vie et aux processus biologiques, dont les plus importantes sont l’eau. En tant que seul solvant connu sans lequel la vie (telle que nous la connaissons) ne peut exister, l’eau est la baguette divine pour la création de la vie. Dans une étude récente, les astrophysiciens Dang Pham et Lisa Kaltenegger démontrent comment les futures enquêtes (lorsqu’elles sont combinées avec l’apprentissage automatique) peuvent caractériser la présence d’eau, de neige et de nuages ​​sur des exoplanètes lointaines.

Dang Pham est étudiant diplômé au Département d’astronomie et d’astrophysique David A. Dunlap de l’Université de Toronto, où il se spécialise dans la recherche sur la dynamique planétaire. Lisa Kaltenegger est professeure agrégée d’astronomie à l’Université Cornell, directrice de l’Institut Carl Sagan et experte mondiale de premier plan dans la modélisation de mondes potentiellement habitables et la caractérisation de leurs atmosphères.

L’eau est quelque chose dont dépend toute vie sur Terre, d’où son importance dans les relevés astronomiques et les exoplanètes. Comme Lisa Kaltenegger l’a dit à Universe Today par e-mail, cette importance se reflète dans la devise de la NASA – « Just Follow the Water » – qui a également inspiré le titre de leur article.

« L’eau liquide à la surface d’une planète est l’un des pistolets fumeux de la vie potentielle – je dis potentiel ici parce que nous ne savons pas de quoi d’autre nous avons besoin pour démarrer la vie. Mais l’eau liquide est un bon début. Nous avons donc utilisé la devise de la NASA de « Suivez simplement l’eau » et a demandé : « Comment pouvons-nous trouver de l’eau à la surface des exoplanètes rocheuses dans la zone habitable ? » Il faut beaucoup de temps pour effectuer la spectroscopie, nous recherchons donc un moyen plus rapide d’identifier provisoirement les planètes les plus prometteuses. -ceux avec de l’eau liquide sur eux. »

Pour l’instant, les astronomes se sont limités à rechercher l’absorption Lyman-alpha, qui indique la présence d’hydrogène gazeux dans l’atmosphère d’une exoplanète. Il s’agit d’un sous-produit de la vapeur d’eau dans l’atmosphère qui a été exposée aux rayons ultraviolets du soleil, l’amenant à se séparer chimiquement de l’hydrogène moléculaire et de l’oxygène (O).2) — qui se perd dans l’espace tandis que l’autre est préservé.

L'apprentissage automatique sera l'un des meilleurs moyens d'identifier les exoplanètes habitables

Cette vue d’artiste montre la planète en orbite autour de l’étoile semblable au soleil HD 85512 dans la constellation sud de Vela (Voile). Crédit : ESO

Cela est sur le point de changer, grâce aux télescopes de nouvelle génération tels que les télescopes James Webb (JWST) et les télescopes spatiaux romains de Nancy Grace (RST), ainsi qu’aux observatoires de nouvelle génération tels que le télescope spatial Origins, l’observatoire d’exoplanètes habitables (HabEx ), l’Ultraviolet Survey/Optical/Large Infrared (LUVOIR). Il existe également des télescopes au sol tels que l’Extremely Large Telescope (ELT), le Giant Magellan Telescope (GMT) et le Thirty Meter Telescope (TMT).

Avec ses grands miroirs primaires et sa gamme avancée de spectrographes, chronographes, optique adaptativeCes instruments pourront réaliser des études d’imagerie directe des exoplanètes. Celle-ci consiste à étudier la lumière réfléchie directement par l’atmosphère ou la surface d’une exoplanète pour obtenir des spectres, permettant aux astronomes de voir quels éléments chimiques sont présents. Mais comme ils le soulignent dans leur article, il s’agit d’un processus qui prend du temps.

Les astronomes commencent par observer des milliers d’étoiles pour des baisses périodiques de luminosité, puis analysent leurs courbes de lumière pour des signes de signaux chimiques. Actuellement, les chercheurs sur les exoplanètes et les astrobiologistes s’appuient sur Passionnés d’astronomie et des algorithmes machines pour trier les volumes de données obtenus par les télescopes. En regardant vers l’avenir, Pham et Caltenegger démontrent l’importance d’un apprentissage automatique plus avancé.

Comme ils le soulignent, les techniques ML permettront aux astronomes de faire plus rapidement les caractérisations initiales des exoplanètes, permettant aux astronomes de hiérarchiser les cibles pour les observations ultérieures. En « suivant l’eau », les astronomes pourront allouer une plus grande partie du précieux temps d’observation de l’observatoire aux exoplanètes susceptibles de fournir des rendements significatifs.

« La prochaine génération de télescopes cherchera de la vapeur d’eau dans l’atmosphère de la planète et de l’eau à la surface des planètes », a déclaré Kaltenegger. « Bien sûr, pour trouver de l’eau à la surface des planètes, il faut chercher [for water in its] sous forme liquide, solide et gazeuse, comme nous l’avons fait dans notre article.

« L’apprentissage automatique nous permet de sélectionner rapidement des filtres optimaux, ainsi que des compromis de précision avec différents rapports signal sur bruit », a ajouté Pham. Dans la première tâche, en utilisant [the open-source algorithm] XGBoost, nous avons obtenu une note des filtres les plus utiles pour l’algorithme dans ses tâches de détection d’eau, de neige ou de nuages. Dans la deuxième tâche, nous pouvons observer à quel point l’algorithme fonctionne avec moins de bruit. Avec cela, nous pouvons tracer une ligne où obtenir plus de signal ne correspondra pas à une bien meilleure résolution. « 

L'apprentissage automatique sera l'un des meilleurs moyens d'identifier les exoplanètes habitables

Illustration d’artiste de l’exoplanète HR8799e, photographiée en direct avec l’instrument GRAVITY sur l’interféromètre Very Large Telescope de l’ESO. Crédit : ESO/L. Calsada

Pour s’assurer que leur algorithme était à la hauteur de la tâche, Pham et Caltenegger ont effectué un gros étalonnage. Cela consistait à générer 53 130 profils spectraux de la Terre froide avec différentes composantes de surface – y compris la neige, l’eau et les nuages ​​d’eau. Ils ont ensuite simulé les spectres de ces eaux en termes d’atmosphère, de réflexion de surface et de profils de couleurs personnalisés. Comme Pham l’a expliqué :

« L’atmosphère est modélisée avec Exo-Prime2 – Exo-Prime2 a été validé contre la Terre dans diverses missions. La réflectivité des surfaces telles que la neige et l’eau sur Terre est mesurée par l’USGS. Nous créons ensuite des couleurs à partir de ces spectres. Nous formons XGBoost sur ces couleurs Pour réaliser trois objectifs distincts : détecter la présence d’eau, la présence de nuages ​​et la présence de neige.

Le formateur XGBoost a montré qu’il est plus facile d’identifier les nuages ​​et la neige que l’eau, ce qui est normal car les nuages ​​et la neige ont un albédo beaucoup plus élevé (une plus grande réflexion de la lumière du soleil) que l’eau. Ils ont en outre identifié cinq filtres parfaits qui fonctionnaient très bien pour l’algorithme, tous d’une largeur de 0,2 μm et dans la plage de la lumière visible. La dernière étape consistait à faire une évaluation probabiliste factice pour évaluer leur modèle de planète par rapport à eau liquideet la neige et les nuages ​​de l’ensemble des cinq filtres optimaux qu’ils ont identifiés.

« Enfin nous [performed] Analyse sommaire bayésienne utilisant Markov-Chain Monte Carlo (MCMC) pour effectuer la même tâche sur les cinq filtres optimaux, comme nonapprentissage automatique Une façon de valider nos découvertes, a déclaré Pham. « Nos découvertes là-bas sont similaires : l’eau est difficile à détecter, mais l’identification de l’eau, de la neige et des nuages ​​par photométrie est faisable. »

De même, ils ont été surpris de voir à quel point XGBoost bien entraîné pouvait reconnaître l’eau à la surface des planètes rocheuses en se basant uniquement sur la couleur. Selon Kaltenegger, ce sont vraiment des filtres : un moyen de séparer la lumière dans des « boîtes » secrètes. « Imaginez un conteneur pour toute la lumière rouge (le filtre ‘rouge’), puis un conteneur pour toute la lumière verte, du vert clair au vert foncé (le filtre ‘vert’) », a-t-elle déclaré.

Leur méthode proposée ne localise pas l’eau dans l’atmosphère d’une exoplanète mais à la surface d’une exoplanète par photométrie. De plus, il ne fonctionnera pas avec la méthode de transit (également connue sous le nom de photométrie de transit), qui est actuellement la méthode la plus utilisée et la plus efficace pour détecter les exoplanètes. Cette méthode consiste à ce que des étoiles distantes observent des baisses périodiques de luminosité attribuées à des exoplanètes passant devant l’étoile (également appelées transits) par rapport à l’observateur.

Parfois, les astronomes peuvent obtenir des spectres de l’atmosphère d’une exoplanète lors de son transit – un processus connu sous le nom de « spectroscopie transitoire ». Lorsque la lumière du soleil traverse l’atmosphère d’une exoplanète par rapport à l’observateur, les astronomes l’analyseront avec des spectromètres pour déterminer quels produits chimiques y sont présents. À l’aide d’optiques sensibles et de spectrophotomètres à matrice, JWST s’appuiera sur cette méthode pour la caractérisation planète extrasolaire ambiance.


Technique pour trouver des océans dans d’autres mondes


Plus d’information:
Dang Pham, Lisa Kaltenegger, Suivez l’eau : trouver de l’eau, de la neige et des nuages ​​sur des exoplanètes terrestres à l’aide de la photométrie et de l’apprentissage automatique. arXiv : 2203.04201v1 [astro-ph.EP]Et le doi.org/10.48550/arXiv.2203.04201

Introduction de
univers aujourd’hui

la citation: L’apprentissage automatique sera l’un des meilleurs moyens d’identifier les exoplanètes habitables (21 mars 2022), récupéré le 21 mars 2022 sur https://phys.org/news/2022-03-machine-ways-habitable-exoplanets.html

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  Commence avec le podcast A Bang #82 : JWST et l'astronomie infrarouge
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Pourquoi avons-nous plus que jamais besoin de l’astronomie ?

Published

on

Pourquoi avons-nous plus que jamais besoin de l’astronomie ?

On me demande souvent pourquoi je suis passionné par l’astronomie. Sans aucun doute, la réponse courte réside dans les efforts très réussis de la NASA pour faire atterrir des Américains sur la Lune. Mais il y avait aussi autre chose. J'ai grandi dans une petite ville où tout ce que j'avais à faire après le lancement d'une fusée depuis Cap Kennedy était de sortir dans mon jardin pour une vue imprenable sur la lune, Vénus et les étoiles les plus brillantes du ciel de début de soirée.

Cette année, j'ai passé la majeure partie de l'hiver nord-américain sous l'équateur, au Chili et en Argentine ; D'abord lors d'une conférence d'astronomie au Chili, puis lors d'une visite des radiotélescopes au sud de Buenos Aires.

J'ai aussi eu le temps de profiter d'un été sud-américain qui m'a beaucoup fait réfléchir sur le fait que nous vivons sur une planète qui précession (ou change son axe de rotation) lorsqu'elle tourne autour de son étoile d'une manière qui a permis à notre planète d'avoir un climat stable et prévisible sur de longues périodes. Un fait sans doute essentiel à la vie telle que nous la connaissons ici. En conséquence, j’ai réfléchi au rôle que jouent finalement les sciences planétaires et l’astronomie dans notre vie quotidienne.

Les personnes qui vivent dans des régions offrant de superbes vues sur le ciel, comme les déserts du sud-ouest américain, Hawaï, l’Afrique du Sud, l’Australie, le Chili et l’Argentine, sont-elles intrinsèquement plus intéressées par l’astronomie ?

Le désert d'Atacama, au nord du Chili, est un véritable paradis pour l'astronomie, comme très peu de sites terrestres peuvent l'être. Il bénéficie d’un ciel exceptionnellement clair et d’une pollution lumineuse relativement faible. Le Chili et l’Argentine ont également une fenêtre sur l’ensemble de notre Voie lactée, ce qui n’est pas possible depuis l’hémisphère Nord.

Un ciel clair suscite également l’intérêt pour l’astronomie

Estela Pérez, professeur de biochimie et de chimie à l'Université nationale Andres Bello de Santiago, affirme que sa passion pour l'astronomie a été suscitée dans son enfance par le ciel nocturne clair au-dessus des nombreux grands lacs du sud du Chili.

Partout au Chili, même à Santiago, nous sortons de notre maison ou de notre appartement et voyons les étoiles et utilisons des applications téléphoniques pour identifier les étoiles que nous ne connaissons pas, explique Pérez, qui est désormais actif localement dans la sensibilisation du public à l'astronomie. Cependant, malgré le ciel clair local, elle affirme que les astronomes professionnels chiliens ont encore besoin de plus de temps pour utiliser les télescopes internationaux qui fonctionnent dans tout le nord du pays.

Posez les grandes questions

Un dimanche après-midi récent, dans le parc du bicentenaire de Santiago, alors que les gens jouaient au paddle-ball et faisaient courir leurs chiens pour récupérer des balles sans fin, je me suis assis et j'ai regardé notre étoile la plus proche disparaître derrière le mont Manquihue, à proximité. J’ai commencé à m’interroger sur la situation dans son ensemble.

Une fois de plus, j’ai été touché de réaliser qu’il est difficile de comprendre nos courtes vies dans un univers qui existe sur de vastes étendues d’espace et de temps. L’univers reste largement incompréhensible, même pour nos meilleurs physiciens théoriciens.

Ces problèmes astrologiques sont ceux auxquels chacun d’entre nous est confronté quotidiennement. Mais aucune religion ou philosophie ne peut répondre pleinement au mystère de notre existence, encore moins à notre place dans l’univers.

Mais l’astronomie est mondiale.

Même la personne la moins instruite en astronomie lève les yeux vers le ciel nocturne et se rend compte qu’il y a quelque chose au-delà d’elle-même et de cette Terre. Les bousiers, les phoques communs et même les albatros connaissent tous la sphère céleste d'une manière qui reste fascinante et mystifiante.

READ  Révélez les anciennes cultures humaines à travers les bijoux qu'ils portaient
Continue Reading

science

Les scientifiques lancent un appel à l'aide pour obtenir des images d'une comète sans queue

Published

on

Les scientifiques lancent un appel à l'aide pour obtenir des images d'une comète sans queue

Les astronomes amateurs ont été invités à aider les chercheurs spatiaux en essayant d'attraper une comète avec une queue manquante devant la caméra.

La comète, connue sous le nom de C/2021 S3 PanSTARRS, est située à peu près à la même distance de la Terre que le Soleil et les chercheurs de l'Université de Reading souhaitent obtenir des images de passionnés de l'espace pour faciliter les recherches météorologiques.

Les chercheurs tentent de développer des moyens d’améliorer et de poursuivre l’analyse de la météorologie spatiale.

Une image d'une comète montre ce qui pourrait arriver à la queue de PanSTARRS. Cette personne sur la photo s'appelle Leonard (Université de Reading/Pennsylvanie)

Ces prévisions sont cruciales pour prévenir les dommages causés par les vents solaires, des flux de particules contenant des tempêtes solaires qui peuvent endommager la technologie dans l'espace et sur Terre.

Sarah Watson, chercheuse doctorante à l'Université de Reading, qui a fait appel aux astronomes amateurs, a déclaré : « Ce que nous nous attendons à voir peut sembler quelque peu inhabituel. Lorsque nous parlons de comètes, les gens pensent souvent à une grosse boule brillante suivie d'une queue longue et fine.

« La comète que nous observons pourrait avoir un aspect différent, car sa queue pourrait se briser lorsqu'elle est frappée par le vent solaire. »

Elle a poursuivi : « Nous avons besoin de nombreuses images chronométrées de la comète pour avoir une idée de son voyage à travers notre système solaire.

« C'est une opportunité fantastique pour les astronomes amateurs de sortir leurs télescopes et de capturer un moment cosmique vraiment étonnant et d'apporter une contribution majeure à une science importante. »

READ  La NASA explore les moyens de maintenir la Station spatiale internationale à flot sans l'aide de la Russie : Officiel

Les images de la comète permettront à l'équipe de recherche d'enregistrer des données sur les conditions locales du vent solaire des éjectas spatiaux.

Si la queue se sépare de la comète ou semble se balancer, l’équipe peut déterminer qu’il y a une augmentation de l’activité du vent solaire à proximité.

La comète est visible dans notre ciel depuis le 14 février et le restera jusqu'à fin mars. La meilleure chance d’attraper la comète sera probablement jusqu’à lundi.

Ce n’est pas visible à l’œil nu.

Les astronomes auront besoin d'un petit télescope qu'ils pourront fixer à un appareil photo ou à un appareil photo doté d'un grand objectif pour photographier la comète, les meilleurs étant envoyés à la British Astronomical Society pour être archivés.

Si vous souhaitez simplement jeter un coup d’œil rapide au C/2021 S3 PanSTARRS, il sera plus facile à repérer dans les semaines à venir car il apparaît plus loin du Soleil et reste plus longtemps au-dessus de l’horizon dans le ciel nocturne.

Continue Reading

science

Citron vert : transformer la chaleur perdue en énergie

Published

on

Citron vert : transformer la chaleur perdue en énergie

Une nouvelle étude menée par des chercheurs de l'Université de Limerick a révélé un moyen durable de convertir efficacement la chaleur perdue en électricité à l'aide de produits ligneux irlandais.

Cette méthode réduit les coûts et l’impact environnemental.

L'étude pionnière, menée par des chercheurs de l'UL en collaboration avec des collègues de l'Université de Valence, a démontré un moyen de produire de l'électricité en utilisant la chaleur de faible qualité récupérée à partir de films dérivés de la lignine.

La lignine, souvent négligée, est un sous-produit durable dérivé du bois dans la production de papier et de pâte à papier.

L'étude montre que ces membranes peuvent convertir la chaleur perdue en électricité en tirant parti du mouvement des atomes chargés (ions) au sein du matériau.

Il s’agit d’une avancée majeure dans la mesure où des études antérieures ont uniquement démontré cette technologie en utilisant de la cellulose issue du bois naturel, et de nouvelles recherches de l’UL l’ont appliquée avec succès à la lignine issue des déchets de bois, contribuant ainsi à une économie plus circulaire et durable.

La chaleur de faible qualité fait référence à la chaleur perdue générée à des températures inférieures à 200°C. Dans les processus industriels, 66 % de la chaleur résiduelle entre dans cette catégorie, soulignant le potentiel de cette réalisation pour développer des applications durables de conversion de chaleur en électricité.

L'étude NXTGENWOOD, financée par le ministère de l'Agriculture, de l'Alimentation et de la Marine, a été publiée dans la revue Advanced Functional Materials.

« La faible chaleur provient de diverses sources telles que la chaleur résiduelle dans les industries, la perte de chaleur dans les systèmes d'isolation, les gradients thermiques des océans et la fermentation de la biomasse », a expliqué le professeur Maurice N. Collins, professeur de science des matériaux à l'école d'ingénierie de l'UL et chercheur principal à l'université. L'Institut Bernal qui a supervisé l'étude et la chaleur solaire.

READ  Révélez les anciennes cultures humaines à travers les bijoux qu'ils portaient

« Malgré son potentiel, l’utilisation d’énergie thermique de mauvaise qualité dans les applications de récupération d’énergie s’est avérée difficile en raison du manque de technologies rentables.

« Notre recherche explore l'utilisation de films thermiques ioniques fabriqués à partir de lignine, un sous-produit sous-utilisé dans l'industrie du papier et de la pâte à papier, offrant ainsi une solution durable », a-t-il déclaré.

En savoir plus: Green Limerick : la campagne primée Limerick on Foot revient

« Nous avons développé la première membrane à base de lignine pour la récupération de l'énergie thermique ionique », a expliqué l'auteur principal Muhammad Mudassar, doctorant chez NXTGENWOOD basé à l'Institut Bernal.

« Notre membrane est légère, facile à installer et biocompatible, ce qui la rend adaptée à diverses applications, notamment la récupération d'énergie thermique, la détection de température et les capteurs biomédicaux pour la surveillance de la santé. »

Les travaux du chercheur de l'UL sur le projet NXTGENWOOD s'inscrivent dans le cadre du Centre de recherche sur les matériaux avancés et la bio-ingénierie (AMBER) financé par l'Irish Science Consortium. Le projet est dédié au développement de nouvelles applications à valeur ajoutée pour le bois irlandais.

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Publicité – Continuez la lecture ci-dessous

Continue Reading

Trending

Copyright © 2023