Connect with us

science

Une nouvelle façon de voir l’activité à l’intérieur d’une cellule vivante

Published

on

Une série d'images montrant des cellules en transition, photographiées par le MIT

Les cellules vivantes sont bombardées de nombreux types de signaux moléculaires entrants qui influencent leur comportement. La capacité de mesurer ces signaux et la manière dont les cellules y répondent via des réseaux de signalisation moléculaire peut aider les scientifiques à en apprendre davantage sur le fonctionnement des cellules, y compris sur ce qui se passe lorsque nous vieillissons ou développons une maladie.

Actuellement, ce type d’études approfondies n’est pas possible car les techniques actuelles d’imagerie cellulaire sont limitées à quelques types différents de molécules au sein d’une cellule à la fois. Cependant, des chercheurs du MIT ont développé une méthode alternative qui leur permet de surveiller jusqu’à sept molécules différentes simultanément, et peut-être plus.

« Il existe de nombreux exemples en biologie où un événement déclenche une longue chaîne d’événements, qui mène ensuite à une fonction cellulaire spécifique », explique Edward Boyden, professeur Y. Eva Tan de neurotechnologie. « Comment cela se produit-il ? C’est sans doute l’un des problèmes fondamentaux de la biologie, alors nous nous sommes demandés : pourriez-vous simplement regarder cela se produire ? »

La nouvelle approche utilise des molécules fluorescentes vertes ou rouges qui clignotent à des rythmes différents. En imaginant la cellule pendant plusieurs secondes, minutes ou heures, puis en extrayant chaque signal fluorescent à l’aide d’un algorithme mathématique, la quantité de chaque protéine cible peut être suivie à mesure qu’elle évolue dans le temps.

Boyden, également professeur de génie biologique et de sciences du cerveau et cognitives au MIT, chercheur au Howard Hughes Medical Institute, membre du McGovern Institute for Brain Research du MIT et du Koch Institute for Integrative Cancer Research, ainsi que codirecteur du K Lisa Yang Center for Electronics Electronic, est l’auteur principal de l’étude, qui paraît aujourd’hui dans cellule. Yong Qian, chercheur postdoctoral au MIT, est l’auteur principal de cet article.

Signaux fluorescents

Le marquage des molécules à l’intérieur des cellules avec des protéines fluorescentes a permis aux chercheurs d’en apprendre beaucoup sur les fonctions de nombreuses molécules cellulaires. Ce type d’étude est souvent réalisé à l’aide de la protéine fluorescente verte (GFP), publiée pour la première fois pour l’imagerie dans les années 1990. Depuis lors, plusieurs protéines fluorescentes qui brillent dans d’autres couleurs ont été développées à des fins expérimentales.

READ  Comment votre téléphone peut vous aider le 8 avril

Cependant, un microscope optique typique ne peut distinguer que deux ou trois de ces couleurs, permettant ainsi aux chercheurs d’avoir seulement un aperçu de l’activité globale se produisant à l’intérieur de la cellule. S’ils parviennent à suivre un plus grand nombre de molécules marquées, les chercheurs pourraient par exemple mesurer la réponse des cellules cérébrales à différents neurotransmetteurs au cours de l’apprentissage, ou étudier les signaux qui incitent une cellule cancéreuse à se propager.

« Idéalement, vous seriez en mesure d’observer les signaux dans la cellule lorsqu’ils fluctuent en temps réel, puis de comprendre comment ils sont liés les uns aux autres. Cela vous indiquera comment la cellule effectue ses calculs », explique Boyden. c’est qu’on ne peut pas regarder beaucoup de choses en même temps. »

En 2020, le laboratoire de Boyden a développé un moyen d’imager simultanément jusqu’à cinq molécules différentes à l’intérieur d’une cellule, en ciblant des rapporteurs fluorescents à différents endroits à l’intérieur de la cellule. Cette approche est connue sous le nom de «Multiplexage spatial« , permet aux chercheurs de distinguer les signaux provenant de différentes molécules même si elles peuvent toutes émettre une fluorescence de la même couleur.

Dans la nouvelle étude, les chercheurs ont adopté une approche différente : au lieu de distinguer les signaux en fonction de leur emplacement physique, ils ont créé des signaux fluorescents qui variaient dans le temps. Cette technologie repose sur des « fluorophores commutables », qui sont des protéines fluorescentes qui s’allument et s’éteignent à une vitesse spécifique. Dans cette étude, Boyden et son équipe ont identifié quatre fluorophores verts commutables, puis en ont conçu deux autres, qui s’allument et s’éteignent tous à des rythmes différents. Ils ont également identifié deux protéines fluorescentes rouges qui mutent à des rythmes différents et ont conçu un fluorophore rouge supplémentaire.

READ  La NASA renoue avec l'hélicoptère Mars Ingenuity

Chacun de ces fluorophores commutables peut être utilisé pour marquer un type différent de molécule dans une cellule vivante, comme une enzyme, une protéine de signalisation ou une partie du cytosquelette de la cellule. Après avoir photographié la cellule pendant plusieurs minutes, heures ou même jours, les chercheurs utilisent un algorithme mathématique pour détecter le signal spécifique de chaque fluorophore, de la même manière que l’oreille humaine peut capter différentes fréquences sonores.

« Dans un orchestre symphonique, vous avez des instruments aigus, comme la flûte, et des instruments graves, comme le tuba. Et au milieu se trouvent des instruments comme la trompette. Ils ont tous des sons différents, et nos oreilles les trient, « , dit Boyden.

La technique mathématique utilisée par les chercheurs pour analyser les signaux des fluorophores est connue sous le nom de mélange linéaire. Cette méthode peut extraire différents signaux fluorophores, de la même manière que l’oreille humaine utilise un modèle mathématique connu sous le nom de transformée de Fourier pour extraire différentes hauteurs d’un morceau de musique.

Une fois cette analyse terminée, les chercheurs peuvent voir quand et où chacune des molécules marquées par fluorescence a été trouvée dans la cellule pendant toute la période d’imagerie. L’imagerie elle-même peut être réalisée à l’aide d’un simple microscope optique, sans nécessiter d’équipement spécialisé.

Phénomènes biologiques

Dans cette étude, les chercheurs ont démontré leur approche en marquant six molécules différentes impliquées dans le cycle de division cellulaire, dans les cellules de mammifères. Cela leur a permis d’identifier des modèles dans la façon dont les niveaux d’enzymes appelées kinases dépendantes de la cycline changent à mesure que la cellule progresse dans le cycle cellulaire.

READ  Découvrez cette fascinante collection de galaxies hôtes de supernova du télescope Hubble

Les chercheurs ont également montré qu’ils pouvaient classer d’autres types de kinases, impliquées dans presque tous les aspects de la signalisation cellulaire, ainsi que dans les structures cellulaires et les organites, tels que le cytosquelette et les mitochondries. En plus de leurs expériences utilisant des cellules de mammifères cultivées dans une boîte de laboratoire, les chercheurs ont montré que la technique pouvait fonctionner dans le cerveau des larves de poisson zèbre.

Selon les chercheurs, cette méthode pourrait être utile pour surveiller la façon dont les cellules réagissent à tout type d’apport, tel que les nutriments, les facteurs du système immunitaire, les hormones ou les neurotransmetteurs. Il peut également être utilisé pour étudier la façon dont les cellules réagissent aux changements dans l’expression des gènes ou aux mutations génétiques. Tous ces facteurs jouent un rôle important dans des phénomènes biologiques tels que le développement, le vieillissement, le cancer, la neurodégénérescence et la formation de la mémoire.

« Vous pouvez considérer tous ces phénomènes comme représentant une classe générale de problèmes biologiques, dans lesquels un événement à court terme – comme manger un nutriment, apprendre quelque chose ou contracter une infection – déclenche un changement à long terme », explique Boyden.

En plus de poursuivre ces types d’études, le laboratoire de Boyden travaille également à élargir le référentiel de fluorophores commutables afin de pouvoir étudier davantage de signaux dans la cellule. Ils espèrent également adapter le système afin qu’il puisse être utilisé dans des modèles de souris.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Published

on

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Une autre énorme éruption solaire a explosé quelques jours après la dernière éruption, provoquant des expositions époustouflantes d’aurores boréales à travers le Royaume-Uni et les États-Unis – mais ne vous attendez pas à une autre exposition époustouflante.

Cette dernière éruption est plus puissante que l’explosion du week-end et constitue la plus importante depuis près de deux décennies.

Cette éruption est beaucoup plus grande, mais la placer face au soleil en réduit l’effet.Crédit : NOAA
Une tempête solaire majeure au cours du week-end a donné lieu à des expositions éblouissantes d’aurores boréales à travers le Royaume-Uni et les États-Unis.Crédit : PA

De graves tempêtes solaires peuvent perturber les satellites GPS, les réseaux électriques, les appareils électroniques, y compris les téléphones portables, et Internet.

Le résultat le moins destructeur et le plus délicieux est l’éblouissante aurore boréale verte et violette, connue sous le nom d’aurores boréales.

Mais cette nouvelle éruption ne devrait pas provoquer de chaos, et il est peu probable que de la lumière apparaisse non plus.

Le pire des cas est une perte temporaire des signaux radio, selon la National Oceanic and Atmospheric Administration (NOAA).

La Terre a échappé à la ligne de mire lorsque l’éruption a éclaté sur une partie du Soleil en orbite loin de nous.

L’Administration nationale des océans et de l’atmosphère (NOAA) a émis une alerte indiquant que le soleil n’est « pas encore en plein soleil ».

La dernière fusée éclairante a été classée par les experts comme X8.7, plus forte que la fusée X2.2 du week-end.

Il s’agit du plus grand cycle solaire actuel de 11 ans.

READ  Comment votre téléphone peut vous aider le 8 avril

« Compte tenu de son emplacement, toute éjection de masse coronale associée à cette éruption n’aurait probablement aucun effet géomagnétique sur Terre », a expliqué la NOAA.

Mais Brian Brasher, de la National Oceanic and Atmospheric Administration (NOAA), a déclaré à l’AP que la lueur pourrait être plus forte lorsque les scientifiques collectent des données provenant d’autres sources.

Les Britanniques de tout le pays ont pu profiter d’une vue éblouissante sur les aurores boréales grâce à la tempête solaire.

Pendant ce temps, le Met Office britannique a déclaré : « Toutes les vues seront probablement limitées aux hautes latitudes » avec « seulement une faible chance de s’étendre aussi loin au sud que l’Écosse ou des latitudes similaires ».

Le Soleil approche du sommet de son cycle de 11 ans, créant de puissantes explosions d’énergie et de matière qui sont libérées très rapidement et pourraient heurter le champ magnétique terrestre.

Aucune perturbation majeure n’est attendue cette fois

Qu’est-ce que les aurores boréales ?

Les aurores boréales se produisent lorsque des particules chargées entrent en collision avec des gaz présents dans l’atmosphère terrestre autour des pôles magnétiques.

Dans l’hémisphère Nord, la majeure partie de cette activité se produit dans une bande connue sous le nom d’ovale d’aurore, couvrant des latitudes comprises entre 60 et 75 degrés.

Lorsque l’activité est forte, elle s’étend pour couvrir une zone plus vaste – ce qui explique pourquoi les expositions peuvent parfois être vues aussi loin au sud que le Royaume-Uni.

La visibilité des aurores boréales a augmenté vendredi en raison d’une « forte » tempête géomagnétique, selon l’Administration nationale américaine des océans et de l’atmosphère (NOAA).

READ  Explorer l'effet de la douleur sur la réponse à la perte de récompense chez les veaux

Ce phénomène apparaît sous la forme de magnifiques bandes de lumière vertes et violettes dansantes, qui captivent les gens depuis des milliers d’années.

Continue Reading

science

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Published

on

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Les scientifiques de la Dublin City University (DCU) estiment que notre planète a 4,5 milliards d’années et que les premiers signes de vie ici – créés par des organismes microscopiques – se trouvaient dans des roches anciennes, il y a 3,7 milliards d’années.

Le professeur Sean Jordan, de la DCU, a déclaré : « Le problème avec les estimations des premières formes de vie est que les caractéristiques créées par ces premiers organismes, qui ont laissé des empreintes physiques dans ces roches anciennes, pourraient, je pense, avoir été créées par un autre processus qui ne le fait pas. pas « . Cela n’implique aucune forme de vie.

Le Dr Jordan, dont les recherches viennent d’être publiées dans la revue scientifique, a ajouté : « Les recherches que nous menons à la DCU pourraient fournir une bien meilleure façon de répondre à cette question importante avec plus de certitude. » Communications Terre et Environnement.

La NASA prévoit une mission de retour d’échantillons sur Mars dans les années 2030.

Cela impliquera de renvoyer des échantillons de roches et de poussières sur Terre pour analyse. À ce stade, il sera crucial pour la science de disposer d’une méthode éprouvée et fiable pour identifier les premiers signes de vie dans les spécimens anciens.

Le Dr Jordan a déclaré : « Nous devons de toute urgence développer une méthode scientifique éprouvée pour identifier les premiers signes de vie dans les roches anciennes, et c’était l’objet de cette nouvelle recherche. » « Actuellement, lorsque nous observons de petites structures microscopiques dans des roches anciennes, nous ne pouvons pas être sûrs si elles ont été formées par des organismes vivants primitifs ou par un processus non vivant.

READ  Webb montre les régions de formation de nouvelles étoiles et d'évolution des galaxies

« Ce processus non vivant peut être le signe de structures chimiques qui conduisent à l’origine de la vie.

« Je développe des méthodes qui nous permettront d’étudier exactement cela. C’est important car cela permettra aux scientifiques d’identifier les premiers signes de vie sur Terre et peut-être sur d’autres planètes. »

Mars a déjà été décrite comme un désert aride, où les températures descendent jusqu’à -153°C en hiver et où l’atmosphère ne représente que 1 % de la densité terrestre, composée principalement de dioxyde de carbone.

Au cours du premier milliard d’années, les océans et les mers étaient protégés par une épaisse couche d’air.

Cependant, son champ magnétique s’est fermé, permettant au vent solaire d’emporter l’atmosphère et l’eau et de disparaître dans l’espace.

Continue Reading

science

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Published

on

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

Relecture


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

× Fermer


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

L’interaction de matériaux solides avec des impulsions laser très courtes et de haute intensité a permis des avancées technologiques majeures au cours du dernier demi-siècle. D’une part, l’ablation laser de matériaux solides permet une fabrication précise et une miniaturisation d’éléments dans des dispositifs médicaux ou de communication. D’un autre côté, les faisceaux d’ions accélérés provenant de matériaux solides utilisant des lasers intenses pourraient ouvrir la voie à de nouvelles opportunités de traitement du cancer grâce à la protonthérapie laser, à la recherche sur l’énergie de fusion et à l’analyse du patrimoine culturel.

Cependant, il reste encore des défis à relever pour pousser les performances d’ablation laser à l’échelle nanométrique et parvenir à une accélération ionique pilotée par laser dans l’industrie et à des fins médicales.

Lors de l’interaction d’une impulsion laser ultracourte avec une cible solide, cette dernière évolue vers un état ionisé ou plasma dans un laps de temps très court (moins d’une picoseconde). [ps]), où se produisent de nombreux processus physiques complexes et couplés, alors que l’interaction entre eux n’est pas encore entièrement comprise.

En raison du développement de la cible ultrarapide, l’étape initiale de la réaction, c’est-à-dire la formation du plasma, est difficile à atteindre expérimentalement. Par conséquent, cette transition ultrarapide du solide au plasma, qui définit les conditions initiales des processus ultérieurs tels que l’ablation ou l’accélération des particules, a jusqu’à présent été abordée par des hypothèses approximatives dans la plupart des modèles numériques décrivant une telle interaction.

En neuf papier Publié dans Lumière : science et applications, une équipe internationale de scientifiques, dont Yasmina Azzammoum et Malti C. Kaluza de l’Institut Helmholtz de Jena et de l’Université Friedrich Schiller de Jena, Allemagne, Stefan Skupin de l’Institut Lumière-Matier, France, et Guillaume Duchateau de la Commission de l’énergie. atomique (CEA-Cesta), France et ses co-auteurs ont franchi une étape importante en élucidant la transformation ultrarapide induite par laser du solide au plasma et en fournissant une compréhension approfondie de l’interaction des processus sous-jacents.

Il offre une technologie avancée d’inspection optique mono-coup qui permet une vue complète de la dynamique de la cible, depuis les solides froids passant par la phase d’ionisation jusqu’aux plasmas extrêmement denses. Ceci est réalisé en utilisant une impulsion de sonde laser avec un spectre optique à large bande qui éclaire l’interaction de l’impulsion de pompe avec des flocons de carbone de type diamant d’une épaisseur nanométrique. Différentes couleurs de l’impulsion de la sonde arrivent à différents moments d’interaction en raison du gazouillis temporel.

Par conséquent, l’évolution de l’état cible codé dans la lumière de sonde transmise peut être capturée avec une seule impulsion de sonde. Cette technique d’inspection ponctuelle est avantageuse par rapport aux méthodes pompe-sonde traditionnelles, où le processus étudié doit être reproduit à l’identique par la pompe pour chaque délai de sonde. Ceci est particulièrement important lors de l’utilisation de systèmes laser haute puissance, qui souffrent souvent de fortes fluctuations entre les impulsions.

En outre, les scientifiques ont démontré que pour l’interprétation correcte des profils de transport de sonde mesurés, une description précise de la transition précoce solide-plasma est cruciale. Un modèle de réaction en deux étapes est développé, la première étape considérant la dynamique d’ionisation de la cible à l’état solide et la deuxième étape considérant la cible à l’état plasma.

Une évolution détaillée de l’état cible à haute résolution temporelle et spatiale (respectivement sub-ps et nm) est fournie, ainsi qu’un aperçu sans précédent de l’interaction entre les processus fondamentaux tels que la dynamique d’ionisation, les collisions de particules et l’expansion hydrodynamique du plasma.

Les résultats et l’interprétation de cette nouvelle technique de criblage devraient contribuer à une compréhension plus approfondie de la dynamique des différentes cibles et à une meilleure compréhension des processus physiques sous-jacents. Ces avancées contribueront probablement à aller au-delà des méthodes traditionnelles de traitement des matériaux par laser ultrarapide et à rendre les technologies ioniques accélérées par laser utilisables dans des applications sociétales.

Plus d’information:
Yasmina Azzam et al., Examen optique des transitions de plasma solide à plasma hyper-densité induites par des lasers ultrarapides, Lumière : science et applications (2024). est ce que je: 10.1038/s41377-024-01444-j

Informations sur les magazines :
Lumière : science et applications


READ  L'eau a coulé sur Mars environ un milliard d'années de plus que les estimations précédentes : NASA, Science News
Continue Reading

Trending

Copyright © 2023