Connect with us

science

7 façons dont la Terre a changé entre les temps anciens et les temps modernes

Published

on

7 façons dont la Terre a changé entre les temps anciens et les temps modernes

Notre système solaire s'est formé il y a environ 4,6 milliards d'années.

Même si nous pensons maintenant comprendre comment le Soleil et notre système solaire se sont formés, cette première vision de l’étape protoplanétaire passée n’est qu’illustrative. Il n’existe aujourd’hui que huit planètes, dont la plupart possèdent des lunes, ainsi que de petits corps rocheux, métalliques et glacés répartis dans diverses ceintures et nuages.

crédit: JHUAPL/SwRI

Finalement, huit planètes sont apparues, avec un impact massif créant la lune terrestre.

Hypothèse d'impact géant de collision

Lorsque deux grands corps entrent en collision, comme cela s'est probablement produit entre la proto-Terre et un monde hypothétique de la taille de Mars connu sous le nom de Theia au début du système solaire, ils fusionnent généralement pour former un autre corps massif, mais les débris dispersés par la collision peuvent fusionner en une ou plusieurs des plus grandes lunes. Ce sera probablement le cas non seulement pour la Terre, mais également pour Mars, Pluton et leurs systèmes lunaires.

crédit: NASA/JPL-Caltech

Voici 7 façons dont la Terre a changé par la suite.

Une représentation artistique d'une collision planétaire au cours de laquelle la Terre a radicalement changé.

Au début, même les petites planètes comme la Terre possédaient de grandes atmosphères d’hydrogène et d’hélium. En raison de leur faible gravité, le vent et le rayonnement solaire ont rapidement détruit cette atmosphère primordiale.

crédit: Le studio de visualisation scientifique de la NASA et l'équipe scientifique MAVEN

1.) Composition de l'atmosphère. Au début, l'hydrogène et l'hélium dominaient.

Un diagramme montrant les étapes de transformation de la Terre lors d'une éruption volcanique.

L'activité volcanique sur Terre, y compris depuis l'Antiquité, a libéré de grandes quantités de solides et de gaz dans notre atmosphère, notamment de l'azote, du dioxyde de carbone et de l'eau, transformant la jeune atmosphère d'hydrogène/hélium en une atmosphère riche en azote et en dioxyde de carbone. . , qui sera ensuite converti par des processus biologiques.

crédit: mauvais. Werner et al., dans Deep Carbon : Past and Present, Cambridge University Press, 2019

Les activités volcaniques et biologiques ont été transformatrices.

READ  Le coup de pied de kung-fu a conduit les chercheurs au plus ancien fossile de poisson complet au monde. C'est ce qu'ils ont trouvé

Un diagramme montrant les changements dans la quantité de dioxyde de carbone dans l'atmosphère terrestre.

crédit: Kate M., Socrate, 2016

Aujourd’hui, l’atmosphère azote/oxygène contient des notes d’eau, d’argon et de dioxyde de carbone.

L'image d'une planète enflammée dans l'espace représentant la Terre a été modifiée.

Alors que la Terre moderne a connu une activité tectonique des plaques depuis au moins 2 milliards d'années et peut-être jusqu'à 4,3 milliards d'années ou plus, on suppose que les premières étapes de l'histoire de notre planète manquaient de tectonique des plaques, car elles ne se sont développées qu'une fois l'eau et suffisamment d'eau. Assez. Une différenciation s'est produite.

crédit: Scitech Daily/Université d'Ehime

2.) Tectonique des plaques. La Terre primitive était riche en lave et possédait des couches internes peu différenciées.

Une image d’un morceau de roche troué, montrant les merveilleuses transformations que la Terre a subies.

Ces minuscules cristaux de zircon, aussi épais qu’un cheveu humain, ont plus de 4 milliards d’années et contiennent une énorme quantité d’informations chimiques sur la Terre primitive. Les teneurs en silicium, en oxygène, en oligo-éléments et en isotopes de ces zircons et de leur magma parent indiquent que la tectonique des plaques est présente sur Terre depuis plus de 4 milliards d'années.

crédit: Institution Smithsonian

Avec ses gradients d’énergie extrêmes, sa lithosphère changeante et son eau liquide, la tectonique des plaques est aujourd’hui indéniable.

Les rythmes des marées, comme celui de la formation Touchet illustrée ici, peuvent nous permettre de déterminer le taux de rotation de la Terre dans le passé. Lors de l’avènement des dinosaures, notre journée durait plutôt 23 heures et non 24 heures. Il y a des milliards d’années, peu après la formation de la Lune, une journée durait plutôt de 6 à 8 heures plutôt que de 24 heures. .

crédit:Williambourg/Wikimedia Commons

3.) Toute la journée. Dans les temps anciens, la Terre tournait sur 360 degrés en seulement 6 à 8 heures.

READ  Regardez SpaceX lancer un cargo Dragon vers la station spatiale le 4 juin après un retard d'une journée

Marées de la lune sur Terre

La Lune exerce une force de marée sur la Terre, qui non seulement provoque les marées mais supprime également la rotation de la Terre, allongeant ainsi la journée. La nature asymétrique de la Terre, exacerbée par les effets gravitationnels de la Lune et du Soleil, entraîne une rotation plus lente de la Terre. Pour compenser et conserver le moment cinétique, la Lune doit tourner vers l’extérieur. C’est pourquoi la Terre ne connaîtra pas d’éclipse solaire totale avant 600 millions d’années, et la durée de chaque jour augmente avec le temps.

crédit: Wikiklass, utilisateur de Wikimedia Commons ; E. Siegel

La durée d’une « journée » est en constante augmentation, actuellement autour de 24 heures.

Synestie

Non seulement la synestie est constituée de cet anneau gonflé de débris autour du noyau commun de la planète, mais elle s'élève également à des températures supérieures à 1 000 Kelvin, émettant de grandes quantités de son propre rayonnement infrarouge, avec des pics dans différentes parties de la planète. Le spectre infrarouge dépend de la température et de la température exacte du système en question. La chaleur de la Lune précoce, initialement située à seulement 24 000 kilomètres, a joué un rôle dans le réchauffement de la face faisant face à la Lune depuis la Terre.

crédit: Sarah Stewart/UC Davis/NASA

4.) Distance à la lune. Lors de sa formation, la Lune n’était qu’à 24 000 kilomètres.

Image de la NASA de la Terre depuis un vaisseau spatial, origami.

Cette vue inhabituelle montre la taille de la Terre et de la Lune, ainsi que la distance entre la Terre et la Lune, à une échelle réelle. La Terre a un diamètre d'environ 12 700 km et la Lune fait un peu plus du quart de la taille de la Terre, mais la distance moyenne actuelle entre la Terre et la Lune est de 384 000 km, soit un peu plus de 30 fois le diamètre de la Terre.

crédit: Léovidus/Roberts Aerospace Industries

Le freinage par marée provoque une sortie de spirale, ce qui entraîne un kilométrage récent de 384 000 km.

READ  Actualités scientifiques | Une étude révèle que l'intérieur de la Terre se refroidit plus rapidement que prévu

Des météorites impactent la Terre primitive

Vue d'artiste de météorites impactant la Terre antique. Certains scientifiques pensent que de tels impacts pourraient avoir fourni de l'eau, des acides aminés et d'autres molécules utiles à l'émergence de la vie sur Terre, car il est clairement prouvé que le taux d'impact et de cratère à travers le système solaire était beaucoup plus élevé qu'il ne l'était au cours des premières années 0,6 à 0,7. milliards d'années. Des années de l'histoire de notre système solaire.

crédit: Laboratoire d'images conceptuelles du Goddard Space Flight Center de la NASA

5.) Répétition des effets. Les influences anciennes étaient omniprésentes dans tout le système solaire.

La lune a deux faces

Cette mosaïque recto-verso du Lunar Reconnaissance Orbiter de la NASA montre les côtés proche (L) et éloigné (R) de la Lune à l'aide d'une technologie moderne. En examinant les proportions et les tailles des cratères sur la Lune par rapport à l'âge de cette partie de la Lune, de Mars, de Mercure et de la Terre, nous pouvons voir comment les taux de cratères ont varié au cours de l'histoire du système solaire.

(crédit: NASA/GSFC/Arizona State University)

Les données martiennes et lunaires montrent une réduction incroyable des impacts de cratères.

Très tôt, peu après la formation de la Terre, la vie est probablement apparue dans les eaux de notre planète. Les preuves dont nous disposons selon lesquelles toutes les formes de vie existantes aujourd'hui peuvent remonter à un ancêtre commun universel sont très solides, mais les premiers stades de notre planète, peut-être au cours des premiers 1 à 1,5 milliard d'années, restent largement mystérieux. Bien que la vie soit apparue très tôt, rien ne prouve que la Terre ait jamais existé et que la vie y ait réellement existé.

crédit: H. Bates et al., Écologie et évolution du paysage, 2018

6.) L'existence de la vie. Au début, la terre était complètement inhabitée.

Chloroplastes

Cette image montre des chloroplastes à l'intérieur des cellules végétales de Plagiomnium affine. La photoconversion du dioxyde de carbone, de l'eau et de la lumière solaire en sucres, ainsi que la production d'oxygène en tant que déchet, sont l'un des processus biologiques qui ont véritablement transformé l'atmosphère et la biosphère terrestre.

crédit: Christian Peters-Fabelfruh / Wikimedia Commons

Cependant, au cours de plus de 3,8 milliards d’années, la vie a modifié la biosphère terrestre.

Le cycle de vie du soleil

En fin de compte, l’évolution du Soleil entraînerait la mort de toute vie sur Terre. Bien avant que nous atteignions le stade de géante rouge, l'évolution stellaire augmentera la luminosité du Soleil de manière suffisamment spectaculaire pour faire bouillir les océans de la Terre, ce qui anéantira presque certainement l'humanité, voire toute la vie sur Terre. Le taux exact d'augmentation de la taille du Soleil, ainsi que les détails de sa perte progressive de masse, ne sont pas encore entièrement connus.

crédit: Wikimedia Commons/Oliver Bateson

7.) L'influence du soleil. La luminosité du Soleil a augmenté de 40 % au cours des 4,5 milliards d'années.

Un graphique montrant le temps avant le passage du soleil à mesure que la Terre change.

Une fois que la protoétoile qui deviendra le Soleil rétrécit et refroidit suffisamment, la fusion nucléaire commence, mais la luminosité et la production d'énergie du Soleil, une fois stabilisées à un niveau environ 50 millions d'années après sa formation, augmentent progressivement avec le temps. Il y a 4,5 milliards d’années, sa luminosité ne représentait qu’environ 70 % de ce qu’elle est aujourd’hui.

crédit: R. Heller et al., Paläontologische Zeitschrift, 2021

Dans 1 à 2 milliards d’années, les océans de la Terre déborderont sans ménagement.

Aujourd’hui, sur Terre, l’eau des océans ne bout généralement que lorsque de la lave ou un autre matériau très chaud y pénètre. Mais dans un futur lointain, l'énergie du soleil suffira à le faire, à l'échelle mondiale. Après 1 à 2 milliards d’années d’évolution solaire supplémentaire, la Terre perdra toute son eau liquide au profit de la phase gazeuse, et la vie sur notre planète devrait prendre fin à ce moment-là.

crédit: Jennifer Williams/Flickr

Mostly Mute Monday raconte une histoire astronomique avec des images, des visuels et pas plus de 200 mots.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Il y a toujours eu quelque chose qui cloche à propos de la nébuleuse du Crabe. Webb a révélé pourquoi !

Published

on

La nébuleuse du Crabe m’a toujours fasciné, même si elle me fascine car elle ne ressemble pas du tout à un crabe ! Ils sont le résultat d’une étoile qui a explosé à la fin de sa vie en 1054 après JC, laissant derrière elle ce que l’on appelle un reste de supernova. A cette époque, l’explosion était visible à l’œil nu, même de jour. On pensait que la supernova à l’origine du nuage provenait d’une étoile moins évoluée dotée d’un noyau composé d’oxygène, de néon et de magnésium. Des études récentes du télescope spatial James Webb révèlent qu’il pourrait s’agir en fait de l’effondrement du noyau d’une étoile riche en fer.

La nébuleuse du Crabe se trouve dans la constellation du Taureau avec un diamètre de 11 années-lumière. Au plus profond du nuage, qui s’étend à une vitesse de 1 500 kilomètres par seconde, se trouve une étoile à neutrons en rotation rapide connue sous le nom de pulsar. Il émet un faisceau de rayonnement électromagnétique qui traverse l’espace comme un phare balayant l’océan. Elle a fait l’objet de nombreuses études pour connaître la dynamique de l’évolution stellaire.

Des études antérieures ont tenté de comprendre l’énergie cinétique totale de l’explosion initiale en fonction de la vitesse du nuage en expansion. Les données suggèrent que la supernova avait une énergie relativement faible, de sorte que l’étoile progénitrice avait probablement une masse de 8 à 10 fois supérieure à celle du Soleil. Si elle avait été plus massive, elle aurait connu une supernova plus violente qui aurait été détectée par la vitesse plus élevée du nuage de gaz en expansion. Mais il y avait un problème.

READ  Les humains pompent tellement d'eau souterraine que cela modifie l'inclinaison de la terre
Le télescope de 48 pouces de l’observatoire Fred Lawrence Whipple a capturé cette image en lumière visible de la galaxie Pinwheel (Messier 101) en juin 2023. L’emplacement de la supernova 2023ixf est encerclé. L’observatoire, situé sur le mont Hopkins en Arizona, est exploité par le Harvard-Smithsonian Center for Astrophysics. Hiramatsu et coll. 2023/Sébastien Gomez (STScI)

Les observations de la nébuleuse du Crabe, en particulier la vitesse de rotation élevée du pulsar, semblent contredire la théorie actuelle de la supernova. Dans un modèle d’étoiles de faible masse comme l’étoile progénitrice de la nébuleuse du Crabe, l’oxygène présent dans le noyau s’enflamme lorsque le noyau s’effondre. Ce processus n’a pas assez d’énergie pour générer un pulsar à rotation aussi rapide.

Une équipe d’astronomes a répondu à cette curiosité en utilisant MIRI (Mid-Infrared Instrument) et NIRCam (Near Infrared Camera) à bord du télescope spatial James Webb pour collecter des données sur la nébuleuse du Crabe. L’équipe était dirigée par Tai Tamim de l’Université de Princeton dans le New Jersey. Ils ont déclaré que la composition gazeuse du nuage indique que l’étoile pourrait être plus évoluée avec du fer dans le noyau, ce qui pourrait conduire à une supernova d’énergie plus élevée qu’on ne le pensait auparavant.

Concept artistique du télescope spatial James Webb

Grâce aux instruments sensibles à l’infrarouge de Webb, les raies d’émission du fer et du nickel peuvent être vues plus clairement que jamais. L’étude des raies brillantes dans le spectre de la nébuleuse a permis d’obtenir une estimation plus fiable du rapport fer/nickel. Ils ont découvert qu’il s’agissait d’un pourcentage plus élevé par rapport au Soleil que celui auquel on pourrait s’attendre pour une supernova plus active.

Les résultats sont prometteurs mais les lectures proviennent de deux petites régions de la nébuleuse, donc pour exclure les variations sur l’ensemble des 11 années-lumière, davantage de lectures sont nécessaires. Si les données de Webb représentent la nébuleuse entière, l’un des mystères de la nébuleuse pourrait enfin être résolu.

READ  Comment la peinture et un haut-parleur peuvent expliquer la physique des jets de plasma du soleil

source : Enquête sur les origines de la nébuleuse du Crabe avec Webb de la NASA

Continue Reading

science

Des chercheurs observent pour la première fois un catalyseur lors d’une réaction électrochimique

Published

on

Des chercheurs observent pour la première fois un catalyseur lors d’une réaction électrochimique

Les réactions électrochimiques sont essentielles à la fabrication de divers produits dans les industries.

La fabrication de l’aluminium, des tuyaux en PVC, du savon et du papier dépend de ces réactions électrochimiques, qui font également partie intégrante du fonctionnement des batteries des appareils électroniques, des voitures, des stimulateurs cardiaques et bien plus encore. De plus, elle a le potentiel de révolutionner la production d’énergie durable et l’utilisation des ressources.

Le cuivre et les catalyseurs similaires jouent un rôle crucial dans la catalyse de ces réactions et sont largement utilisés dans les applications électrochimiques industrielles. Cependant, le manque de compréhension du comportement des catalyseurs au cours des réactions a entravé le développement de catalyseurs améliorés. Jusqu’à présent, les chercheurs n’étaient capables d’imager les stimuli qu’avant et après les réactions, ce qui laisse un vide dans la compréhension des processus qui se produisent entre les deux.

Une collaboration entre le California Institute for Nanosystems de l’Université de Californie et le Lawrence Berkeley National Laboratory a supprimé cette limitation. L’équipe a utilisé une cellule électrochimique spécialement conçue pour surveiller la structure atomique du catalyseur en cuivre pendant la réaction conduisant à la décomposition du dioxyde de carbone.

Cette méthode offre un moyen potentiel de convertir les gaz à effet de serre en carburant ou en d’autres matériaux précieux. Les chercheurs ont enregistré des cas dans lesquels le cuivre formait des amas liquides puis disparaissait à la surface du catalyseur, entraînant des piqûres visibles.

« Pour quelque chose qui est si omniprésent dans nos vies, nous comprenons très peu de choses sur le fonctionnement des stimuli en temps réel. » a déclaré le co-auteur Bri Narang, professeur de sciences physiques à l’UCLA et membre du CNSI. « Nous avons désormais la capacité d’observer ce qui se passe au niveau atomique et de le comprendre d’un point de vue théorique.

« Tout le monde bénéficierait de la conversion directe du dioxyde de carbone en carburant, mais comment pouvons-nous le faire à moindre coût, de manière fiable et à grande échelle ? » a ajouté Narang, qui occupe également un poste en génie électrique et informatique à la School of Engineering de l’UCLA. « C’est le genre de science fondamentale qui devrait faire avancer ces défis. »

Sur la gauche, une flèche rouge suit le mouvement d’un atome de cuivre individuel pendant la réaction électrochimique. À droite, les flèches jaunes indiquent les piqûres restant dans la surface du catalyseur. Source de l’image : Qiubo Zhang/Laboratoire national Lawrence Berkeley

Les découvertes dans le domaine de la recherche sur le développement durable ont des implications significatives, et la technologie qui permet ces découvertes a le potentiel d’améliorer l’efficacité des processus électrochimiques dans diverses applications qui ont un impact sur la vie quotidienne.

READ  kea néo-zélandais peut utiliser des écrans tactiles mais ne peut pas faire la distinction entre le réel et le virtuel | des oiseaux

Selon Yu Huang, co-auteur de l’étude et professeur Traugott et Dorothea Frederking et directeur du Département de science et d’ingénierie des matériaux à l’UC Samueli, l’étude pourrait aider les scientifiques et les ingénieurs à passer d’essais et d’erreurs à une approche de conception plus systématique. .

« Toute information que nous pouvons obtenir sur ce qui se passe réellement lors de la stimulation électrique est d’une aide précieuse pour notre compréhension de base et notre recherche de conceptions pratiques. » a déclaré Huang, membre du CNSI. « Sans cette information, c’est comme si nous lancions des fléchettes les yeux bandés et espérions atteindre quelque part près de la cible. »

Un microscope électronique de haute puissance de la fonderie moléculaire du Berkeley Lab a été utilisé pour capturer les images. Ce microscope utilise un faisceau d’électrons pour examiner des spécimens avec un niveau de détail inférieur à la longueur d’onde de la lumière.

Des défis sont rencontrés en microscopie électronique lorsqu’on tente de révéler la structure atomique des matériaux dans des environnements liquides, comme le bain d’électrolyte salin nécessaire à une réaction électrochimique.

L’ajout d’électricité à l’échantillon augmente la complexité du processus. L’auteur correspondant Haiime Cheng, scientifique principal au Berkeley Lab et professeur adjoint à l’UC Berkeley, et ses collègues ont développé un dispositif hermétiquement fermé pour surmonter ces obstacles.

Les scientifiques ont effectué des tests pour s’assurer que le flux d’électricité dans le système n’affectait pas l’image résultante. En se concentrant sur l’endroit exact où le catalyseur en cuivre rencontre l’électrolyte liquide, l’équipe a enregistré les changements qui se sont produits sur une période d’environ quatre secondes.

READ  Comment voir une boule de feu conjuguée verte lors d'une éclipse

Au cours de la réaction, la structure du cuivre s’est transformée d’un réseau cristallin régulier, généralement présent dans les métaux, en une masse irrégulière. Ce faisceau désordonné, composé d’atomes de cuivre et d’ions chargés positivement ainsi que de quelques molécules d’eau, s’est ensuite déplacé à la surface du catalyseur. Ce faisant, les atomes ont été échangés entre du cuivre régulier et irrégulier, piquant la surface du catalyseur. Finalement, la masse irrégulière a disparu.

« Nous ne nous attendions pas à ce que la surface se transforme en une forme amorphe puis revienne à une structure cristalline. » a déclaré le co-auteur Yang Liu, étudiant diplômé de l’UCLA dans le groupe de recherche de Huang. « Sans cet outil spécial pour observer le système en action, nous ne serions jamais en mesure de capturer ce moment. Les progrès des outils de caractérisation comme ceux-ci permettent de nouvelles découvertes fondamentales, nous aidant à comprendre le fonctionnement des matériaux dans des conditions réelles. »

Référence du magazine :

  1. Qiubo Zhang, Zhigang Song, Qianhu Sun, Yang Liu, Jiawei Wan, Sophia B. Betzler, Qi Cheng, Junyi Shangguan, Karen C. Bustillo, Peter Ercius, Bryneha Narang, Yue Huang et Haimei Cheng. Dynamique atomique des interfaces solide-liquide électrifiées dans les cellules liquides TEM. Nature, 2024 ; Identification numérique : 10.1038/s41586-024-07479-s

Continue Reading

science

Des fossiles d’anciens reptiles ressemblant à des crocodiles découverts au Brésil

Published

on

Des fossiles d’anciens reptiles ressemblant à des crocodiles découverts au Brésil
Brasilia :

Un scientifique brésilien a découvert des fossiles de petits reptiles ressemblant à des crocodiles qui vivaient pendant la période du Trias, des millions d’années avant l’apparition des premiers dinosaures.

Les fossiles du prédateur, appelé Parvosuchus aureloi, comprennent un crâne complet, 11 vertèbres, un bassin et quelques os de membres, selon le paléontologue Rodrigo Muller de l’Université fédérale de Santa Maria dans l’État de Rio Grande, auteur de la recherche publiée jeudi. Journal des rapports scientifiques.

Parvosuchus, qui vivait il y a environ 237 millions d’années, marchait sur quatre pattes et mesurait environ un mètre de long et se nourrissait de reptiles plus petits. Les fossiles ont été découverts dans le sud du Brésil. Parvosuchus, qui signifie « petit crocodile », appartient à une famille éteinte de reptiles appelée Gracilissuchidae, qui jusqu’à présent n’était connue qu’en Argentine et en Chine.

« Les Gracilisuchidae sont des organismes extrêmement rares dans le monde paléontologique », a déclaré Mueller à Reuters. « Ce groupe est particulièrement intéressant car ils vivaient juste avant l’aube des dinosaures. Les premiers dinosaures vivaient il y a 230 millions d’années. »

Parvosuchus était un prédateur terrestre. Gracili suchidae représente l’une des branches les plus anciennes de la lignée connue sous le nom de Pseudosuchia qui comprenait plus tard la branche alligator.

Parvosuchus a vécu à une époque d’innovation évolutive à la suite de la pire extinction massive sur Terre il y a 252 millions d’années, avec plusieurs groupes de reptiles en compétition avant que les dinosaures ne deviennent finalement dominants. Les derniers membres des Gracilisuchidae ont incontestablement disparu environ sept millions d’années avant l’apparition des premiers dinosaures.

READ  Regardez SpaceX lancer un cargo Dragon vers la station spatiale le 4 juin après un retard d'une journée

(Cette histoire n’a pas été éditée par le personnel de NDTV et est générée automatiquement à partir d’un flux syndiqué.)

La vidéo en vedette du jour

Les chemins de fer indiens effectuent un essai du plus haut pont ferroviaire du monde, « Chenab », à Reasi

Continue Reading

Trending

Copyright © 2023