novembre 28, 2022

7seizh

Dernières nouvelles et nouvelles du monde de 7 Seizh sur les affaires, les sports et la culture. Nouvelles vidéo. Nouvelles des États-Unis, d'Europe, d'Asie-Pacifique, d'Afrique, du Moyen-Orient, d'Amérique.

La star de « Black Widow » a mangé son ami pour établir un nouveau record

Il a déchiré une étoile dense qui s’effondrait et a consommé presque toute la masse de son compagnon stellaire.

Au cours de ce processus, elle est devenue l’étoile à neutrons la plus lourde observée à ce jour.

L’étoile tourne 707 fois par seconde, ce qui en fait l’une des étoiles à neutrons en orbite les plus rapides de la Voie lactée.

Mesurer le poids de cette étoile à neutrons record, qui est en tête des classements avec 2,35 fois la masse du Soleil, aide les astronomes à comprendre l’étrange état quantique de la matière. À l’intérieur de ce truc densequi – s’il devient beaucoup plus lourd que cela – s’effondre complètement et disparaît sous forme de trou noir.

« Le chemin évolutif est absolument remarquable. Double point d’exclamation. »

« Nous savons à peu près comment la matière se comporte à la densité nucléaire, comme elle le fait dans le noyau d’un atome d’uranium », explique Alex Filippenko, professeur d’astronomie à l’Université de Californie à Berkeley. « Une étoile à neutrons est comme un noyau géant, mais lorsque vous avez une masse solaire et demie de cette matière, soit environ 500 000 masses terrestres de noyaux tous accrochés les uns aux autres, on ne sait pas du tout comment ils vont se comporter. . »

Roger W. Romani, professeur d’astrophysique à l’Université de Stanford, note que les étoiles à neutrons sont si denses – un pouce cube pesant plus de 10 milliards de tonnes – que leurs noyaux sont la matière la plus dense de l’univers qui manque trous noirsce qui est impossible à étudier car ils sont cachés derrière leur horizon des événements.

Une étoile à neutrons, un pulsar nommé PSR J0952-0607, est donc l’objet le plus dense en vue de la Terre.

systèmes de veuve noire

La mesure de la masse de l’étoile à neutrons a été rendue possible par l’extrême sensibilité du télescope Keck I de 10 mètres à Maunakea, Hawaï, qui a pu enregistrer un spectre de lumière visible de l’étoile compagne intensément brillante, qui a maintenant été réduite à la taille d’une grande planète gazeuse. Les étoiles sont situées à environ 20 000 années-lumière de la Terre en direction de la constellation des Sextans.

Découvert en 2017, le PSR J0952-0607 est appelé pulsar « veuve noire » – une analogie avec la tendance d’une araignée veuve noire femelle à consommer un mâle beaucoup plus petit après l’accouplement. Filippenko et Romani étudiaient Black Widow systèmes Pendant plus d’une décennie, dans l’espoir de déterminer la limite supérieure de croissance des étoiles à neutrons/pulsars.

READ  Le télescope spatial Hubble de la NASA a réalisé un énorme exploit dans l'espace

« En combinant cette mesure avec celle de nombreuses autres veuves noires, nous montrons que les étoiles à neutrons doivent atteindre au moins cette masse, 2,35 plus ou moins 0,17 masse solaire », explique Romani, professeur de physique à l’Université de Stanford et membre de l’Institut Kavli. et Cosmologie.

« Cela fournit à son tour certaines des contraintes les plus fortes sur la propriété de la matière à plusieurs fois la densité visible dans les noyaux atomiques. En fait, de nombreux modèles courants de physique de la matière dense ont été exclus par ce résultat. »

Si 2,35 masses solaires sont proches de la limite supérieure des étoiles à neutrons, disent les chercheurs, l’intérieur est probablement une soupe de neutrons ainsi que des quarks haut et bas – des composants de protons et de neutrons ordinaires – mais pas de matière exotique, comme des « étranges  » quarks ou kaons, qui sont des particules Il contient des quarks étranges.

« La masse maximale élevée des étoiles à neutrons indique qu’elles sont un mélange de noyaux et de quarks fondant de haut en bas jusqu’au noyau », explique Romani. « Cela exclut de nombreux états proposés de la matière, en particulier ceux avec une configuration interne particulière. »

Romani et Filipenko et l’étudiant diplômé de Stanford Dinesh Kandel sont co-auteurs d’un article décrivant les découvertes de l’équipe qui ont été acceptées pour publication par Lettres du journal astrophysique.

Quelle taille peuvent-ils obtenir ?

Les astronomes conviennent généralement que lorsqu’une étoile avec un noyau supérieur à environ 1,4 masse solaire s’effondre à la fin de sa vie, elle forme un corps dense, comprimé à l’intérieur sous une pression si élevée que tous les atomes sont écrasés pour former une mer de les neutrons et leurs composants semi-nucléaires, les quarks.

Ces étoiles à neutrons naissent en tournant, et bien qu’elles soient trop faibles pour être vues dans la lumière visible, elles se révèlent comme des pulsars, ou émettent des faisceaux de lumière – ondes radio, rayons X ou même rayons gamma – qui font clignoter la terre alors qu’elle tourne, comme un faisceau tournant d’un phare.

READ  Les astéroïdes "sautant" de la poussière spatiale pourraient aider à briser le mouvement

Les pulsars « normaux » tournent et clignotent à un rythme d’environ une fois par seconde, en moyenne, une vitesse qui s’explique facilement compte tenu de la rotation naturelle de l’étoile avant qu’elle ne s’effondre. Mais certains pulsars se répètent des centaines ou jusqu’à 1 000 fois par seconde, ce qui est difficile à expliquer à moins que la matière ne tombe sur l’étoile à neutrons et ne l’endommage. Mais pour certains pulsars millisecondes, aucun compagnon n’apparaît.

Une explication possible des pulsars millisecondes isolés est que chacun avait autrefois un compagnon, mais l’a réduit à néant.

« Le chemin évolutif est tout à fait remarquable. Un double point d’exclamation », déclare Filippenko.

« Alors que l’étoile compagnon évolue et commence à se transformer en une géante rouge, le matériau fuit dans l’étoile à neutrons, et c’est en orbite autour de l’étoile à neutrons », explique-t-il. « Grâce à la rotation, il est maintenant incroyablement énergique et des vents de particules commencent à sortir de étoile à neutrons. Ensuite, ce vent frappe l’étoile donneuse et commence à décaper le matériau, et avec le temps, la masse de l’étoile donneuse se réduit à la masse d’une planète, et si plus de temps passe, elle disparaît complètement.

« Alors, c’est ainsi que des pulsars d’un millième de seconde peuvent se former. Ils n’étaient pas seuls au début – ils devaient être dans une paire binaire – mais ils se sont progressivement évaporés de leurs compagnons et sont maintenant isolés. »

Le PSR J0952-0607 et son étoile compagnon plus faible soutiennent l’histoire d’origine du pulsar milliseconde.

« Ces objets ressemblant à des planètes sont des dépôts d’étoiles ordinaires qui ont contribué à la masse et au moment cinétique, faisant tourner leurs camarades pulsars à des intervalles de millisecondes et augmentant leur masse dans le processus », explique Romani.

« Dans le cas de l’ingratitude cosmique, le pulsar Black Widow, qui a dévoré une grande partie de son compagnon, le réchauffe et le vaporise maintenant en masses planétaires et peut-être en annihilation complète », explique Filippenko.

Trouver des pulsars de veuve noire dans lesquels leur compagnon est petit, mais pas trop petit pour être détecté, est l’un des rares moyens de peser les étoiles à neutrons. Dans le cas de ce système binaire, l’étoile compagne – maintenant seulement 20 fois la masse de Jupiter – est déformée par la masse de l’étoile à neutrons et se verrouille progressivement, de la même manière que notre lune est piégée dans son orbite de sorte que nous ne voir qu’un côté.

READ  La tragédie! La NASA dit que les sondes spatiales Voyager échouent

Le côté faisant face à l’étoile à neutrons est chauffé à des températures d’environ 6 200 Kelvin, ou 10 700 degrés Fahrenheit, ce qui est légèrement plus chaud que notre Soleil et suffisamment brillant pour être vu avec un grand télescope.

Filippenko et Romani ont tourné le télescope Keck I sur le PSR J0952-0607 à six reprises au cours des quatre dernières années, observant à chaque fois à l’aide du spectromètre d’imagerie à basse résolution des segments de 15 minutes pour attraper un compagnon faible à des points spécifiques de ses 6,4 heures. orbite du pulsar. . En comparant les spectres avec les spectres d’étoiles semblables au Soleil, ils ont pu mesurer la vitesse orbitale de l’étoile compagne et calculer la masse de l’étoile à neutrons.

Filippenko et Romani ont jusqu’à présent examiné une douzaine de systèmes Black Widow, bien que seules six de leurs étoiles compagnes soient suffisamment brillantes pour leur permettre de calculer la masse. Ils contenaient tous des étoiles à neutrons moins massives que PSR J0952-060.

Ils espèrent étudier davantage de pulsars veuves noires, ainsi que leurs cousins ​​: les dos rouges, nommés d’après l’équivalent australien des pulsars noirs, qui ont des compagnons plus proches d’un dixième de la masse du Soleil ; et ce que les gitans appelaient tidarrens – où le compagnon est d’environ un centième de masse solaire – d’après un parent de la veuve noire araignée. mentionner ce type, Tidarren sisyphoidesenviron 1% de la taille de la femelle.

« Nous pouvons continuer à chercher des veuves noires et des étoiles à neutrons similaires patinant près du bord du trou noir. Mais si nous n’en trouvons pas, cela renforce l’argument selon lequel 2,3 masses solaires est la véritable limite, qui devient alors trous noirsdit Filipenko.

« C’est dans les limites de ce que le télescope Keck peut faire, donc à moins de conditions d’observation fantastiques, le resserrement de la mesure du PSR J0952-0607 attend probablement l’âge du télescope de 30 mètres », ajoute Romani.

Le soutien pour le travail est venu de la National Aeronautics and Space Administration, du Christopher R.

la source: Université de Californie à Berkeley