Connect with us

science

Les bactéries du désert aident à développer une peinture qui capte le carbone

Published

on

Les bactéries du désert aident à développer une peinture qui capte le carbone


Registre Libre d’écouter cet article

Merci. Écoutez cet article en utilisant le lecteur ci-dessus.

Vous souhaitez écouter cet article gratuitement ?

Remplissez le formulaire ci-dessous pour débloquer l’accès à tous les articles audio.

Le biorevêtement est un type de revêtement à base d’eau qui encapsule les bactéries vivantes dans des couches. Outre le captage du carbone, ils peuvent également servir de bioréacteurs ou de biocapteurs.

L’innovation de Sari, appelée « Green Living Paint », se démarque. Crocodiopsis cubain, qui sont des bactéries qui subissent la photosynthèse pour produire de l’oxygène tout en piégeant le dioxyde de carbone. Cette espèce se trouve généralement dans le désert et a besoin de peu d’eau pour survivre. Il est classé comme extrémophile et peut survivre dans ces conditions difficiles.

Vous voulez plus d’actualités ?

participation à Réseaux technologiquesUne newsletter quotidienne, fournissant chaque jour les dernières nouvelles scientifiques directement dans votre boîte de réception.

Abonnez-vous gratuitement

médecin Susie Hingley Wilsonmaître de conférences en bactériologie Il a déclaré à l’Université de Surrey :

« Avec l’augmentation des gaz à effet de serre, en particulier le dioxyde de carbone, dans l’atmosphère et les inquiétudes concernant les pénuries d’eau dues à la hausse des températures mondiales, nous avons besoin de matériaux innovants, respectueux de l’environnement et durables. Des revêtements biosourcés mécaniquement robustes et prêts à l’emploi, ou « vivants ». peintures », peut aider « Nous relevons ces défis en réduisant la consommation d’eau dans les processus basés sur des bioréacteurs qui consomment de grandes quantités d’eau. »

READ  Quels États peuvent voir les aurores boréales lundi ? Ce que montrent les prévisions

Pour étudier l’adéquation Crocodiopsis cubain En guise de biorevêtement, les chercheurs ont immobilisé les bactéries dans un biorevêtement mécaniquement résistant composé de molécules de polymère dans l’eau, qui a été complètement séché avant d’être réhydraté. Ils ont observé que les bactéries à l’intérieur du biorevêtement produisent jusqu’à 0,4 gramme d’oxygène par gramme de biomasse et par jour et captent le dioxyde de carbone. Les mesures continues d’oxygène n’ont montré aucun signe de diminution d’activité sur un mois.

En revanche, les chercheurs ont mené des expériences similaires avec Synechocystis sp, une autre cyanobactérie couramment trouvée en eau douce. Contrairement à son homologue du désert, il était incapable de produire de l’oxygène au sein de la biosphère.

Simon Krings, auteur principal et ancien chercheur diplômé à Département des sciences microbiennes Il a déclaré à l’Université de Surrey :

« Les organismes photosynthétiques Chroococcidiopsis ont une capacité exceptionnelle à survivre dans des environnements extrêmes, tels que la sécheresse et après des niveaux élevés d’exposition aux rayons ultraviolets. Cela en fait des candidats potentiels pour coloniser Mars. »

M Joseph Keddieprofesseur de physique des matériaux mous à École de mathématiques et de physique Il a déclaré à l’Université de Surrey :

« Notre subvention de recherche du Leverhulme Trust a permis ce projet multidisciplinaire. Nous envisageons que nos revêtements d’origine biologique contribuent à un avenir plus durable et sont pleinement alignés sur la vision de notre entreprise. » jeLe Sustainability Institute, où le Dr Hingley Wilson et moi sommes boursiers.

référence: Krings S, Chen Y, Keddie JL, Hingley-Wilson S. Evolution de l’oxygène des cyanobactéries extrémophiles piégées dans des biorevêtements solides. Kolodkin-Gal I, éd. Spectre microbiologique. 2023;11(5):e01870-23. est ce que je: 10.1128/spectre.01870-23

READ  La NASA traite les astronomes avec des "bonbons pour les yeux" ; Partage une image Hubble éblouissante d'un amas d'étoiles

Cet article a été republié ci-dessous Matiéres. Remarque : Le matériel peut avoir été modifié en termes de longueur et de contenu. Pour plus d’informations, veuillez contacter la source susmentionnée.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Trois lancements de missiles spéciaux à surveiller

Published

on

Trois lancements de missiles spéciaux à surveiller

Avez-vous vu le lancement du Starship de SpaceX plus tôt ce mois-ci ? Si cela a aiguisé votre appétit pour des lancements de fusées plus avancés, alors vous avez de la chance car cet été verra trois autres lancements de grande envergure.

Attendez-vous à une rare sortie de la fusée Falcon Heavy de SpaceX, au lancement de la première nouvelle fusée et à une tentative d’envoyer des astronautes plus loin dans l’espace que jamais depuis les missions Apollo de la NASA au début des années 1970.

Voici tout ce que vous devez savoir – et les dates de votre agenda.

Mardi 25 juin : Rare lancement et atterrissage tandem

Mission : SpaceX Falcon Heavy lance le satellite GOES-U de la NOAA.

Où regarder : SpaceX site Web ou Chaîne Youtube.

La dixième fusée SpaceX Falcon Heavy sera lancée aujourd’hui depuis le Kennedy Space Center en Floride, mettant en orbite un satellite météorologique NASA/NOAA GOES-U. GOES-U est unique en ce sens qu’il dispose d’un coronographe qui image mystérieusement l’atmosphère extérieure la plus chaude du Soleil, aidant ainsi les physiciens solaires à prédire avec plus de précision la météo spatiale.

Falcon Heavy est un lanceur lourd partiellement réutilisable, et le point culminant sera de voir ses deux propulseurs atterrir côte à côte sur deux plateformes côte à côte.

La NASA et SpaceX visent une fenêtre de lancement de deux heures qui s’ouvrira à 17 h 16 HNE le mardi 25 juin, mais gardez un œil sur SpaceX se nourrit de X Pour un timing précis.

Mardi 9 juillet : Une nouvelle fusée puissante décolle pour la première fois dans le ciel

Mission : Lancer pour la première fois la nouvelle fusée géante en Europe.

Où regarder : Agence spatiale européenne site Web ou Chaîne Youtube.

L’Agence spatiale européenne a confirmé le premier lancement de la sonde Ariane 6 depuis le port spatial européen en Guyane française.

Le nouveau lanceur lourd européen remplace Ariane 5 et dispose d’un étage supérieur rallumable, qui lui permettra de lancer plusieurs missions sur différentes orbites en un seul vol.

Vendredi 12 juillet : Polaris Dawn atteint 870 milles au-dessus de la Terre

Mission : SpaceX Falcon 9 lancera un équipage commercial de quatre astronautes privés dans l’espace à bord d’une capsule Dragon.

Où regarder : SpaceX site Web ou Chaîne Youtube.

Le programme Polaris est un partenariat avec SpaceX qui verra jusqu’à trois missions de vols spatiaux habités pour démontrer de nouvelles technologies. Elle est dirigée par Jared Isaacman, fondateur de Shift4 Payments, parti dans l’espace en tant que commandant de la mission SpaceX Inspiration4 en septembre 2021.

Cette première mission, « Polaris Dawn », verra le vaisseau spatial Dragon avec quatre astronautes (Isaacman, Scott Poteet, Sarah Gillies et Anna Menon) voler à 870 milles au-dessus de la Terre, le niveau le plus élevé depuis les missions Apollo sur la Lune.

Suis-moi Twitter/X Et Instagram.

Récupère mes livres Observation des étoiles en 2024, Programme d’observation des étoiles pour débutants Et Quand aura lieu la prochaine éclipse ?

Je vous souhaite un ciel clair et des yeux écarquillés.

READ  Away Team Tech: Icefin Diving Droid offre une visibilité sans précédent sous la banquise antarctique
Continue Reading

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  La formation d'oiseaux glissants de protéines végétales peut conduire à de meilleures récoltes

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

science

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Published

on

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Illustration de la conception expérimentale générale du CREME exoMIP (Tsigaridis et al. en préparation), comme exemple de la façon dont l’exoMIP peut être structuré pour permettre une large participation communautaire. — Ph.EP astronomique

Alors que le télescope spatial James Webb commence à renvoyer des observations, il est plus important que jamais que les modèles climatiques exoplanétaires soient capables de prédire de manière cohérente et correcte l’observabilité des exoplanètes, de récupérer leurs données et d’interpréter les environnements planétaires à partir de ces données.

Les comparaisons entre modèles jouent un rôle crucial dans ce contexte, surtout à l’heure où peu de données sont disponibles pour valider les prédictions des modèles. Le groupe de travail CUISINES du Nexus for Exoplanet System Science (NExSS) de la NASA soutient une approche systématique pour évaluer les performances des modèles d’exoplanètes et fournit ici un cadre pour mener des projets d’intercomparaison de modèles d’exoplanètes organisés par la communauté (exoMIP).

Le cadre CUISINES adapte spécifiquement les pratiques de la communauté climatique terrestre pour répondre aux besoins des chercheurs exoplanétaires, y compris une gamme de types de modèles, de cibles planétaires et d’études spatiales paramétriques. Son objectif est d’aider les chercheurs à travailler collectivement, équitablement et ouvertement pour atteindre des objectifs communs.

Le cadre CUISINES repose sur cinq principes : 1) Définir à l’avance la ou les questions de recherche que exoMIP vise à aborder. 2) Créer une conception pilote qui maximise la participation de la communauté et en faire la publicité largement. 3) Planifiez un calendrier de projet qui permet à tous les membres d’exoMIP de participer pleinement. 4) Créer des produits de données à partir des résultats du modèle pour une comparaison directe avec les observations. 5) Créez un plan de gestion des données applicable aujourd’hui et évolutif à l’avenir.

READ  Des téléphones qui détectent les tremblements de terre

Au cours des premières années de son existence, CUISINES fournit déjà un soutien logistique à 10 exoMIP et continuera à organiser des ateliers annuels pour approfondir les commentaires de la communauté et présenter de nouvelles idées d’exoMIP.

Linda E. Sohl, Thomas J. Fuchez, Sean Domagal-Goldman, Duncan A. Christie, Russell Detrick, Jacob Haque-Misra, C.E. Harman, Nicholas Iero, Nathan J. Mayne, Costas Tsigarides, Geronimo L. Villanueva, Ambre V. Jeune, Guillaume Chaverot

Commentaires : 14 pages, deux numéros
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP) ; Instruments et méthodes astrophysiques (astro-ph.IM)
Citer comme : arXiv:2406.09275 [astro-ph.EP] (ou arXiv :2406.09275v1 [astro-ph.EP] pour cette version)
Date de soumission
Qui : Linda Suhl
[v1] Jeudi 13 juin 2024, 16:14:22 UTC (903 Ko)
https://arxiv.org/abs/2406.09275
Astrobiologie

Continue Reading

Trending

Copyright © 2023