Connect with us

science

Les nouvelles découvertes expliquent un casse-tête de longue date de la cellule

Published

on

Les nouvelles découvertes expliquent un casse-tête de longue date de la cellule

Cette gouttelette de liquide est en fait composée de molécules de protéines. Il agit comme la colle qui maintient le microtubule attaché, via le transport de protéines motrices, à un câble d’actine – un processus essentiel à la poursuite de la division cellulaire. Crédit : Ella Marushenko / Ella Maru Studios

Amélioré par la nature au cours de 100 millions d’années d’évolution, le fluide intelligent fournit un couplage critique qui garantit que la division cellulaire continue de fonctionner correctement.

des savants qui Institut Paul Scherrer Et ETH Zurich Découvrez le mécanisme par lequel les protéines forment de minuscules gouttelettes liquides qui agissent comme un adhésif intelligent dans les cellules. Ces gouttelettes se fixent aux extrémités des microtubules, aidant à positionner correctement le noyau cellulaire pendant la division. Recherche publiée dans Biologie Cellulaire Natureexplique le mystère de longue date de la façon dont les structures de protéines mobiles dans les cellules s’attachent les unes aux autres.

Les liaisons entre les pièces mobiles des machines sont essentielles à leur bon fonctionnement. Qu’elles soient rigides ou flexibles, comme la liaison entre les arbres d’un moteur ou les joints d’une carrosserie, les propriétés des matériaux garantissent la bonne transmission des efforts mécaniques. Cela est particulièrement vrai dans les cellules, où les interactions entre les structures cellulaires en mouvement sont essentielles à de nombreux processus biologiques. Cependant, la façon dont la nature réalise ce couple a longtemps intrigué les scientifiques.

Or, des chercheurs étudiant un couplage important dans la division cellulaire de la levure ont révélé que pour ce faire, les protéines coopèrent pour se condenser en une gouttelette liquide. L’étude était une collaboration entre les équipes de Michel Steinmetz de l’Institut Paul Scherrer PSI et d’Yves Barral de l’ETH Zurich, avec l’aide des groupes d’Eric Dufresne et de Jörg Stelling, tous deux de l’ETH Zurich.

En formant une gouttelette liquide, les protéines atteignent des propriétés matérielles idéales pour assurer la fonction biologique. Cette découverte n’est que le début d’une nouvelle compréhension du rôle que jouent les fluides intelligents dans la cellule, estime Baral, dont le groupe de recherche étudie le processus de division cellulaire chez la levure. « Nous découvrons que les fluides composés de biomolécules peuvent être très complexes et présenter une bien plus grande variété de propriétés que celles auxquelles nous sommes habitués de notre point de vue macroscopique. À cet égard, je pense que nous allons découvrir que ces fluides ont des propriétés fascinantes. » qui ont été sélectionnés par l’évolution sur des centaines de millions d’années.

Microtubules : diagonales de la cellule

L’étude se concentre sur le couplage qui se produit aux extrémités des microtubules – des filaments qui sillonnent le cytoplasme de la cellule et ressemblent de manière troublante à des tentacules extraterrestres. Ces tubes creux, formés à partir du bloc de construction de la tubuline, agissent comme un tube de traction, transportant diverses charges à travers la cellule.

Les microtubules reçoivent l’une de leurs charges utiles les plus importantes lors de la division cellulaire. Chez la levure, ils ont la fonction importante de tirer le noyau, qui contient les chromosomes en division, entre les cellules mère et fille. Pour ce faire, les microtubules doivent se connecter, via une protéine motrice, à un câble d’actine ancré à la membrane cellulaire de la cellule fille émergente. La protéine motrice marche ensuite le long du câble d’actine, tirant le microtubule dans la cellule fille jusqu’à ce que sa précieuse cargaison de matériel génétique atteigne sa destination prévue entre les deux cellules.

Cette conjugaison, qui est essentielle pour la poursuite de la division cellulaire, doit résister à la tension au fur et à mesure que la protéine motrice progresse et permettre au noyau de manœuvrer avec précision. Michel Steinmetz, dont le groupe de recherche au PSI est expert en biologie structurale des microtubules, explique : « Entre les microtubules et la protéine motrice, il doit y avoir de la colle. Sans elle, si le microtubule se casse, on se retrouve avec une cellule fille qui ne contient pas de matériel génétique et ne survivra pas.

Accouplement naturel élastique

Chez la levure, trois protéines, qui forment le cœur du réseau dit Kar9, ornent la pointe du microtubule pour réaliser ce couplage. La façon dont ils obtiennent les propriétés matérielles nécessaires semble être en contradiction avec la compréhension traditionnelle des interactions protéiques.

Une question qui a longtemps intrigué les scientifiques est de savoir comment les trois protéines centrales du réseau Kar9 restent attachées à l’extrémité du microtubule même lorsque des sous-unités de tubuline sont ajoutées ou supprimées : l’équivalent d’un crochet à l’extrémité d’une corde de remorquage restant en place tandis que les segments adjacents de la corde sont insérés. ou le couper. Ici, leur découverte offre une réponse : tout comme une goutte de colle liquide peut s’accrocher au bout d’un crayon, cette protéine « liquide » peut s’accrocher à l’extrémité d’un microtubule alors même qu’il grossit ou rétrécit.

Les chercheurs ont découvert que pour obtenir cette propriété fluide, les trois protéines centrales du réseau Kar9 coopèrent via un réseau d’interactions faibles. Lorsque les protéines interagissent à un certain nombre de points différents, si une interaction échoue, les autres restent et la « colle » continue à se serrer les coudes. Les chercheurs pensent que cela confère la flexibilité nécessaire pour que les microtubules restent attachés à la protéine motrice même sous tension.

Pour parvenir à leur découverte, les chercheurs ont systématiquement étudié les interactions entre les trois composants protéiques du réseau Kar9. Basé sur les connaissances structurelles acquises à Swiss Light Source[{ » attribute= » »>SLS in previous studies, they could mutate the proteins to selectively remove interaction sites and observe the effects in vivo and in vitro.

In solution, the three proteins came together to form distinct droplets, like oil in water. To prove that this was occurring in yeast cells, the researchers investigated the effect of mutations on cell division and the ability of the proteins to track the end of a shrinking microtubule.

“It was fairly straightforward to prove the proteins were interacting to form a liquid condensate in vitro. But it was a huge challenge to provide compelling evidence that this is what was happening in vivo, which took us several years,” explains Steinmetz, who first postulated the idea of a ‘liquid protein glue’ for microtubule-tip binding proteins together with a colleague from the Netherlands in a 2015 review publication.

Not your bog-standard multipurpose glue

Barral is struck by how sophisticated the glue is. “It is not just a glue, but it is a smart glue, which is able to integrate spatial information to form only at the right place.” Within the complex tangle of identical microtubules in the cell cytoplasm, just one microtubule receives the droplet that enables it to attach to the actin cable and pull the genetic information into place. “How nature manages to assemble a complex structure on the end of just one microtubule, and not others, is mindboggling,” he emphasizes.

The researchers believe that the liquid property of the proteins plays an important role in achieving this specificity. In the same way that small oil droplets in a vinaigrette fuse together, they hypothesize that small droplets initially form on many microtubules, which somehow subsequently converge to form one larger droplet on a single microtubule. How exactly this is achieved remains a mystery and is the subject of investigations in the Steinmetz and Barral teams.

Reference: “Multivalency ensures persistence of a +TIP body at specialized microtubule ends” by Sandro M. Meier, Ana-Maria Farcas, Anil Kumar, Mahdiye Ijavi, Robert T. Bill, Jörg Stelling, Eric R. Dufresne, Michel O. Steinmetz and Yves Barral, 19 December 2022, Nature Cell Biology.
DOI: 10.1038/s41556-022-01035-2

The study was funded by the Swiss National Science Foundation 

READ  La sonde lunaire de la NASA capture une image fantomatique de Jupiter et de ses lunes
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Une technique spectroscopique qui identifie les molécules d’eau sur une surface révèle comment elles se relâchent après agitation

Published

on

Une technique spectroscopique qui identifie les molécules d’eau sur une surface révèle comment elles se relâchent après agitation

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Diagramme schématique du processus de relaxation vibratoire de l’étirement de OH dans l’air/eau (H2o)Interface. crédit: Communications naturelles (2024). est ce que je: 10.1038/s41467-024-45388-8

× Fermer


Diagramme schématique du processus de relaxation vibratoire de l’étirement de OH dans l’air/eau (H2o)Interface. crédit: Communications naturelles (2024). est ce que je: 10.1038/s41467-024-45388-8

Une image plus complète de la façon dont les molécules d’eau excitées lorsqu’elles interagissent avec l’air perdent leur énergie a été révélée par les scientifiques de RIKEN dans une étude. publié Dans le magazine Communications naturelles. Ce résultat sera précieux pour mieux comprendre les processus se produisant à la surface de l’eau.

L’eau est une anomalie à bien des égards. Par exemple, ses points de congélation et d’ébullition sont beaucoup plus élevés que prévu, et il est moins dense sous forme solide (glace) que sous forme liquide.

Presque toutes les propriétés inhabituelles de l’eau proviennent des liaisons faibles qui se forment et se brisent constamment entre les molécules d’eau voisines. Ces liaisons, appelées liaisons hydrogène, surviennent parce que l’oxygène attire davantage les électrons que l’hydrogène. Ainsi, l’oxygène légèrement négatif d’une molécule est attiré vers les atomes d’hydrogène légèrement positifs des autres molécules.

Mais un petit segment de molécules d’eau – celles à la surface – subit les liaisons hydrogène différemment des autres molécules d’eau. Dans leur cas, le bras qui dépasse dans l’air ne forme pas de liaisons hydrogène.

Jusqu’à présent, personne n’était capable de comprendre comment les bras de ces molécules de surface se détendaient après avoir été étirés. En effet, il est très difficile d’isoler le signal de ces molécules.

« Nous avons une bonne connaissance du comportement des molécules d’eau dans un corps liquide, mais notre compréhension des molécules d’eau à l’interface est loin derrière », explique Tahi Tahara du laboratoire de spectroscopie moléculaire RIKEN.

Au cours de la dernière décennie, une équipe dirigée par Tahara a tenté de remédier à cette situation en développant des techniques spectroscopiques très sophistiquées pour explorer les interactions des molécules d’eau sur les surfaces.

L’équipe a maintenant développé une technique basée sur la spectroscopie infrarouge, suffisamment sensible pour détecter la façon dont les liaisons oxygène et hydrogène dans les molécules d’eau de surface se relâchent.

Grâce à cette technique, l’équipe a découvert que les liaisons oxygène et hydrogène coincées dans l’air tournent en premier sans perdre d’énergie. Ils se détendent ensuite d’une manière similaire aux molécules d’un corps liquide qui forment un réseau de liaisons hydrogène.

« En ce sens, il n’y a pas beaucoup de différence entre les molécules à l’interface et à l’intérieur du liquide après avoir interagi avec leurs voisines, car elles partagent toutes deux le même processus de relaxation », explique Tahara. « Ces résultats dressent un tableau complet de la façon dont les liaisons oxygène et hydrogène se détendent à la surface de l’eau. »

Tahara et son équipe ont désormais l’intention d’utiliser leur technique spectroscopique pour observer les réactions chimiques qui se produisent à l’interface de l’eau.

Plus d’information:
Woongmo Sung et al., Profil de relaxation vibratoire unifié de l’étirement de l’OH à l’interface air/eau, Communications naturelles (2024). est ce que je: 10.1038/s41467-024-45388-8

Informations sur les magazines :
L’intelligence artificielle de la nature


Communications naturelles


READ  L'ancien astéroïde donne un aperçu de l'évolution de notre système solaire
Continue Reading

science

Supraconductivité à haute température : exploration du couplage électron-phonon en quadrature

Published

on

Supraconductivité à haute température : exploration du couplage électron-phonon en quadrature

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Une image conceptuelle de la formation des pôles quantiques. Les boules bleues représentent les ions chargés positivement dans le réseau matériel et les deux points rouges représentent les paires de Cooper. Crédit : Pavel A. Volkov.

× Fermer


Une image conceptuelle de la formation des pôles quantiques. Les boules bleues représentent les ions chargés positivement dans le réseau matériel et les deux points rouges représentent les paires de Cooper. Crédit : Pavel A. Volkov.

Nouvelle étude publié dans Lettres d’examen physique (PRL) explore le potentiel du couplage électron-phonon en quadrature pour améliorer la supraconductivité grâce à la formation de dipôles quantiques.

Le couplage électron-phonon est l’interaction entre les électrons et les vibrations dans un réseau appelé phonons. Cette interaction est cruciale pour la supraconductivité (conductivité électrique sans résistance) de certains matériaux car elle facilite la formation de paires de Cooper.

Les paires de Cooper sont des paires d’électrons liés entre eux via des interactions attractives. Lorsque ces paires de Cooper se condensent dans un état cohérent, nous obtenons des propriétés supraconductrices.

Le couplage électron-phonon peut être classé en fonction de sa dépendance au déplacement du phonon, c’est-à-dire la quantité de vibration du réseau. Le cas le plus courant est celui où la densité électronique est couplée linéairement aux déplacements du réseau, provoquant une distorsion du réseau pour entourer chaque électron.

Les chercheurs voulaient étudier si la supraconductivité des matériaux présentant un couplage quadratique pouvait être améliorée lorsque l’énergie d’interaction est proportionnelle au carré du décalage des phonons.

Phys.org s’est entretenu avec les co-auteurs de l’étude, Zhaoyu Han, Ph.D. Candidat à l’Université de Stanford et Dr Pavel Volkov, professeur adjoint au Département de physique de l’Université du Connecticut.

Parlant de sa motivation derrière la poursuite de ces recherches, Hahn a déclaré : « L’un de mes rêves a été d’identifier et de proposer de nouveaux mécanismes qui pourraient aider à atteindre la supraconductivité à haute température. »

« La supraconductivité du titanate de strontium dopé a été découverte il y a plus de 50 ans, mais son mécanisme reste une question ouverte, les mécanismes classiques étant improbables. C’est pourquoi j’ai commencé à rechercher des mécanismes alternatifs de couplage électron-phonon », a déclaré le Dr Volkov.

Le couplage linéaire et ses défis pour la supraconductivité

Comme mentionné précédemment, le couplage peut être classé comme linéaire ou quadratique.

Le couplage linéaire fait référence au scénario dans lequel le couplage est proportionnel au déplacement des phonons. En revanche, le couplage quadratique dépend du carré du décalage des phonons.

Ils peuvent être identifiés grâce à l’étude de la symétrie de la matière, aux observations expérimentales et aux cadres théoriques. Cependant, leurs effets sur la supraconductivité semblent très différents.

Le couplage linéaire, qui apparaît dans la plupart des matériaux supraconducteurs, est largement étudié en raison de sa prévalence dans de nombreux matériaux et de son cadre théorique.

Cependant, les supraconducteurs conventionnels dotés d’un couplage électron-phonon linéaire sont confrontés à des limites. Ces matériaux ont une faible température critique, qui est la température en dessous de laquelle un matériau peut présenter une supraconductivité.

« Les températures critiques de ces supraconducteurs sont généralement inférieures à 30 Kelvin ou -243,15 degrés Celsius. Cela est dû en partie au fait que l’énergie de liaison et l’énergie cinétique de la paire Cooper sont considérablement supprimées dans les régimes de couplage faible et fort, respectivement », a expliqué Hahn.

Dans le cas d’un couplage faible, les interactions électron-phonon sont faibles en raison de la faible énergie de liaison. En couplage fort, les interactions sont plus fortes, conduisant à une augmentation de la masse effective des paires de Cooper, ce qui conduit à la suppression de la supraconductivité.

Cependant, la suppression entrave tout effort visant à améliorer les températures critiques dans de tels matériaux en augmentant simplement la force de couplage, encourageant les chercheurs à explorer des matériaux dotés d’un couplage électron-phonon quadratique, qui n’est pas bien compris.

Modèle Holstein et pôles quantiques

Le modèle Holstein est un cadre théorique utilisé pour décrire l’interaction entre les électrons et les phonons. Il a déjà été utilisé pour étudier la physique générale du couplage linéaire électron-phonon.

Les chercheurs ont étendu le modèle Holstein pour inclure le couplage électron-phonon en quadrature dans leur étude.

Le modèle Holstein aide à calculer des quantités telles que l’énergie de liaison des paires de Cooper et la température critique des supraconducteurs.

Dans les matériaux conventionnels, la liaison des électrons médiée par les phonons conduit à la formation de paires de Cooper.

L’interaction est linéaire, ce qui signifie que la force de couplage augmente avec l’amplitude des vibrations du réseau. Cette interaction peut être comprise à l’aide des principes de la physique classique et est bien étayée par des observations expérimentales telles que les effets isotopiques.

Dans le cas d’une conjonction quadratique, la situation est complètement différente. En étendant le modèle Holstein pour inclure la dépendance du second ordre du couplage au déplacement des phonons, les chercheurs ont pris en compte les fluctuations quantiques (mouvement aléatoire) des phonons et leur énergie du point zéro (l’énergie des phonons à 0 K ).

Les électrons interagissent avec les fluctuations quantiques des phonons, formant un « dipôle quantique ». Contrairement au couplage linéaire, l’origine des interactions attractives est la mécanique quantique pure.

La supraconductivité est dans la limite du couplage faible et fort

Les chercheurs ont découvert que lorsque l’interaction électron-phonon est faible, le mécanisme par lequel les électrons s’apparient pour former des paires de Cooper n’est pas efficace, comme dans le cas linéaire. Il en résulte une température critique plus basse qui peut être affectée par la masse des ions (effet isotopique), mais d’une manière différente que dans le cas linéaire.

En d’autres termes, la (basse) température critique d’une substance peut changer considérablement selon les différentes masses atomiques.

En revanche, lorsque les interactions électron-phonon sont fortes, nous obtenons la formation de dipôles quantiques, qui peuvent devenir supraconducteurs à une température déterminée par leur masse effective et leur densité.

En dessous de la température critique, les condensateurs bipolaires quantiques peuvent se déplacer librement sans perturber le cristal. Plus de mouvement conduit à un état supraconducteur, plus stable et ayant une température critique plus élevée. Contrairement au mécanisme linéaire, la masse dipolaire quantique n’est que légèrement améliorée par le couplage, ce qui permet des températures critiques plus élevées.

« Notre travail montre que ce mécanisme permet des températures de transition plus élevées, au moins pour un couplage fort. Ce qui est également positif, c’est que ce mécanisme ne nécessite aucune condition préalable particulière pour être efficace, et il existe des conditions tout à fait réalistes dans lesquelles il sera dominant », a-t-il déclaré. expliqué. Dr Volkov.

« Sur la base des constantes physiques fondamentales liées aux solides, une estimation optimiste de la température critique pouvant être atteinte par ce mécanisme pourrait être de l’ordre de 100 K », a prédit Hahn.

Travail futur

« Une implication possible, tout d’abord, serait une augmentation de la température de transition de la supraconductivité. La supraconductivité dépend également de manière sensible des propriétés des électrons ; par conséquent, pour obtenir un couplage fort, nous proposons l’utilisation de super-réseaux spécialement conçus pour les électrons. » Le Dr Volkov a expliqué.

Les chercheurs affirment que la prochaine étape, en théorie, consisterait à trouver le régime optimal de force de couplage pour la supraconductivité. Les chercheurs espèrent également que les expérimentateurs exploreront les matériaux de super-réseau présentant de grands couplages électron-phonon quadratiques.

« Expérimentalement, la création de super-réseaux via la structuration ou l’utilisation d’interfaces entre des matériaux torsadés pourrait être une voie prometteuse pour atteindre le type de supraconductivité auquel nous nous attendons », a déclaré le Dr Volkov.

Hahn a également noté qu ‘ »il est important d’identifier les matériaux présentant de grands couplages électron-phonon quadratiques grâce à des calculs préliminaires, car cela n’a pas été systématiquement exploré ».

Plus d’information:
Zhaoyu Han et al., Supraconductivité dipolaire quantique à partir du couplage électron-phonon en quadrature, Lettres d’examen physique (2024). est ce que je: 10.1103/PhysRevLett.132.226001. sur arXiv: DOI : 10.48550/arxiv.2312.03844

Informations sur les magazines :
Lettres d’examen physique


arXiv


READ  De nouvelles méthodes peuvent rendre la moelle épinière moins excitable et peuvent être utilisées pour traiter les spasmes musculaires
Continue Reading

science

L’ESA fait le premier pas pour modifier ses politiques de géo-retour

Published

on

L’ESA fait le premier pas pour modifier ses politiques de géo-retour

WASHINGTON – Les États membres de l’Agence spatiale européenne ont pris des mesures pour ajuster leurs politiques de longue date qui attribuent des contrats pour les programmes de l’agence en fonction de l’importance de la contribution financière de chaque pays.

Lors d’une conférence de presse le 19 juin à l’issue d’une réunion du conseil d’administration de l’ESA, les responsables de l’agence ont déclaré que les membres avaient approuvé la « première étape » des changements apportés aux politiques de géoretour, ou géoretours, pour ses programmes. Dans le cadre du retour géographique, les fonds fournis par les États membres pour les programmes de l’ESA sont restitués sous forme de contrats aux entreprises de ces pays.

« Cela montre que l’ESA évolue vers de nouvelles conditions », a déclaré Josef Aschbacher, directeur général de l’ESA, lors de la conférence de presse.

Certains pays européens et membres de l’ESA ont critiqué le géoretour, arguant qu’il crée des inefficacités en attribuant des contrats sur la base des pays qui ont contribué aux programmes et pour quels montants, plutôt que sur la base du meilleur fournisseur. Ils affirment que cela entraîne des retards et une augmentation des coûts.

Cependant, d’autres ont averti que l’élimination du retour géographique pourrait nuire aux programmes de l’ESA en réduisant les incitations dont disposent les pays pour contribuer à ces programmes. Sans garantir que leurs entreprises reçoivent des contrats proportionnés au montant de leur contribution, les pays peuvent être réticents à fournir un financement.

La décision constitue un petit pas vers une modification des règles de retour géographique. « Nous avons présenté une décision visant à accroître la flexibilité dans la mise en œuvre des géoretours à l’ESA, mais également à simplifier le processus », a déclaré Geraldine Nga, directrice marketing de l’ESA.

READ  Les scientifiques identifient des changements inquiétants qui subsistent chez les astronautes entre les missions

« Cela est vu comme une première étape dans une évolution plus générale de la politique industrielle, prenant en compte un contexte spatial totalement nouveau, qui nécessite une plus grande agilité et rapidité de prise de décision de la part de l’ESA tout en maintenant le principe de retour géographique, indispensable pour l’ESA », a-t-elle déclaré, « et nous a permis de construire une chaîne d’approvisionnement très solide en Europe ».

Les responsables de l’ESA n’ont pas expliqué les changements spécifiques au géoretour approuvés par le conseil dans la résolution, mais Aschbacher a suggéré qu’ils s’appuieraient sur une proposition faite il y a plusieurs années selon laquelle l’ESA organiserait un concours pour un programme, choisirait le soumissionnaire gagnant et chercherait ensuite un financement auprès de États membres. .

« C’est quelque chose que nous aimerions maintenant mettre en pratique sur quelques exemples », a-t-il déclaré. La nouvelle politique démarrera dans des programmes pilotes que l’ESA n’a pas encore choisis. « Nous n’avons pas encore identifié les bonnes personnes, mais je suis sûr que nous avons de bons candidats en tête. »

Les membres de l’ESA ont approuvé la décision après une discussion « intensive », a déclaré Aschbacher. Les ajustements au retour géographique ne sont qu’un élément des changements proposés par le Comité de la politique industrielle, mais il n’a fait aucune mention d’autres propositions de ce comité.

« Il existe une ouverture parmi nos États membres pour procéder à de réels ajustements et voir ce qui est le mieux pour une industrie compétitive en Europe », a-t-il déclaré. « Cependant, certains États membres ont déclaré que c’était une bonne chose. Nous avons fait des progrès très importants sur cette étape, mais nous devrions peut-être l’utiliser comme point de départ pour de nouveaux développements et de nouvelles discussions. »

READ  L'ancien astéroïde donne un aperçu de l'évolution de notre système solaire

Continue Reading

Trending

Copyright © 2023