Cet article a été revu selon Science X processus d’édition
Et Stratégies. éditeurs Mettez en avant les attributs suivants tout en assurant la crédibilité du contenu :
Vérification des faits
Publication évaluée par des pairs
source fiable
Relecture
Écrit par Ingrid Fadelli, Phys.org
Image décrivant le principe de détection de la matière noire claire par PandaX. La matière noire claire se disperse avec des électrons dans le détecteur PandaX-4T. Crédit : Collaboration PandaX
Des équipes de physiciens du monde entier tentent de détecter la matière noire, une substance insaisissable qui n’émet, n’absorbe ni ne réfléchit la lumière. Parce qu’elle manque d’interactions avec les forces électromagnétiques, la matière est très difficile à observer directement, et donc la plupart des chercheurs recherchent plutôt des signaux résultant de ses interactions avec d’autres particules dans son environnement.
L’expérience PandaX est un effort de recherche dédié à la recherche de matière noire à l’aide de données recueillies par le détecteur d’astrophysique et de particules Xenon, situé au China Jinping Underground Laboratory (CJPL) dans le Sichuan, en Chine. Dans un article de recherche récent publié dans Lettres d’examen physiqueles chercheurs impliqués dans cette expérience à grande échelle ont publié les résultats de leurs dernières recherches sur la matière noire claire (c’est-à-dire l’interaction faible des particules massives de masse inférieure à 1 GeV).
« Actuellement, il existe de fortes limitations pour les candidats de matière noire de masse lourde dérivés de résultats nuls dans les expériences de détection directe avec des détecteurs au xénon », ont déclaré Yue Ming, Cheng Lin et Ning Zhou à Tech Xplore, au nom de la collaboration PandaX. Cependant, les recherches conventionnelles ne sont pas sensibles à la matière noire de masse légère (moins de GeV/c2) en raison du seuil d’énergie de détection. L’utilisation du signal d’ionisation uniquement (S2 uniquement) pour rechercher de la matière noire de masse légère peut abaisser le seuil d’énergie De ~ 1 keV à 0,1 keV Les analyses de données précédentes de S2 uniquement dans des détecteurs au xénon n’ont pas été en mesure de modéliser le fond, ce qui a empêché des recherches efficaces et sensibles de matière noire de masse légère.
Dans les détecteurs biphasiques au xénon, tels que le détecteur PandaX, la matière noire peut généralement se manifester via des signaux instantanés de luminescence (S1) et d’ionisation (S2). Pour réduire le seuil d’énergie auquel ce signal peut être détecté, Meng, Lin, Zhou et leurs collègues se sont concentrés sur le second de ces signaux (S2), le soi-disant signal d’ionisation, qui se produit lorsque les électrons sont ionisés à partir d’atomes de xénon, et puis extrait du xénon liquide sous champ électrique.
« Nous nous sommes concentrés uniquement sur les données d’ionisation, car le signal d’ionisation S2 est amplifié dans le champ électrique élevé dans la région du gaz xénon, et l’exigence S1 est assouplie », ont expliqué les chercheurs. Au cours de la mise en service de PandaX-4T, environ 90 jours de données ont été collectées. Nous avons d’abord supprimé l’aveugle de la région de contrôle pour valider l’estimation du bruit de fond, puis supprimé l’aveugle de la région de signal pour tester le signal de matière noire de masse légère. Au final, aucune différence significative un excès a été observé et nous avons dérivé des contraintes sur les particules de matière noire claire.
Bien que ces derniers travaux de la collaboration PandaX n’aient pas abouti à des observations de signaux indiquant la présence de matière noire claire, ils ont permis aux chercheurs d’imposer des limites plus strictes à la détection de ce type de matière noire en recherchant des signaux d’ionisation. Ces limitations limitent une masse de l’ordre de 40 MeV/c2 à 10 gv/c2 Pour l’interaction de la matière noire avec l’électron ponctuel, 100 MeV/c2 à 10 gv/c2 pour l’interaction de la matière noire avec un électron via un milieu lumineux, et 3,2 à 4 GeV/c2 pour l’interaction matière noire–nickel indépendante du spin.
« C’est la première fois que seuls les fonds ionisants ont été compris et modélisés dans des chambres de projection temporelle au xénon liquide modernes avec un seuil d’énergie faible au niveau des électrons », ont déclaré Ming, Lin et Zhu. « Les résultats fournissent les contraintes les plus strictes à ce jour sur les interactions possibles des particules de matière noire sur de larges plages de masse allant jusqu’à environ 40 MeV/c.2 à 10 gv/c2selon le type d’interaction. La nouvelle frontière se rapproche de l’espace des paramètres que les chercheurs s’attendent à ce que les particules de matière noire produites par des mécanismes cryogéniques et cryogéniques dans l’univers primitif pourraient habiter. »
De nouvelles contraintes développées par la collaboration PandaX pourraient faciliter de nouvelles recherches sur la matière noire légère en utilisant les données collectées par les détecteurs biphasiques au xénon. Pendant ce temps, le détecteur PandaX collecte plus de données à un niveau de fond inférieur, ce qui pourrait aider à imposer des limites de plus en plus strictes à la matière noire claire, contribuant potentiellement à sa détection à l’avenir.
« L’essai PandaX-4T continue de collecter des données et d’améliorer la sensibilité de ses recherches », ont ajouté Meng, Lin et Zhou. « Sur la seule base de notre meilleure compréhension de l’arrière-plan S2, nous prévoyons de le supprimer davantage en développant un meilleur algorithme de discrimination avec plus de données collectées et / ou en améliorant le cas d’exécution pour supprimer les origines de ces arrière-plans. »
Plus d’information:
Shuaijie Li et al, Recherche de matière noire claire à l’aide de signaux d’ionisation dans l’expérience PandaX-4T, Lettres d’examen physique (2023). DOI : 10.1103/PhysRevLett.130.261001
Informations sur la revue :
Lettres d’examen physique
La Mars Society est sur le point de tenir sa conférence annuelle, en personne et en ligne, et vous pouvez regarder le tout virtuellement en vous inscrivant.
Vingt-sixième édition internationale Mars La conférence communautaire débute jeudi 5 octobre à l’Arizona State University à Tempe. La réunion comprend une liste d’orateurs qui parlent de sujets d’actualité Missions sur MarsTâches analogiques et plans pour l’avenir.
L’événement se déroulera quotidiennement jusqu’au dimanche (8 octobre) et les informations d’inscription seront disponibles Disponible sur cette page, gracieuseté de la Mars Society. Il y aura une diffusion en direct gratuite et accessible au public de l’événement, mais les inscrits pourront accéder aux événements en direct.
à propos de:« Nous devons aller sur Mars avant que je meure. » Lisez un extrait exclusif de « Elon Musk » du biographe Walter Isaacson
« L’événement de cette année se concentrera sur le thème » Mars pour tous « », ont écrit les représentants de la Mars Society dans un communiqué. « Alors que l’intérêt mondial et le soutien du public pour les humains sur Mars augmentent, les défenseurs de cette entreprise – y compris la Mars Society – ont développé une série d’initiatives qui permettent aux membres du public d’en apprendre davantage sur, et même d’expérimenter, l’idée d’établissement humain. sur Mars. » Planète rouge. »
Des outils en ligne permettront aux participants virtuels de soumettre des questions aux intervenants, de se connecter avec d’autres participants et de regarder la diffusion en direct. Il y aura également une démonstration en direct de MarsVR, une plateforme de réalité virtuelle open source de la Mars Society « qui peut être utilisée pour des recherches et des formations sérieuses dans le but d’envoyer des humains sur Mars ».
Une nébuleuse rouge rosé occupe le devant de la scène dans une nouvelle image de l’Observatoire européen austral (ESO).
Le nuage en expansion de poussière et de gaz, connu sous le nom d’IC1284, est une émission nébuleuseUn nuage lumineux et diffus de gaz ionisé qui émet sa propre lumière. Cette nébuleuse en émission, au centre de l’image, brille en rouge à cause de l’activité une étoile Formation et fusion d’hydrogène dans la région.
« Sa lueur rose provient des électrons des atomes d’hydrogène : ils sont excités par le rayonnement des jeunes étoiles, mais perdent ensuite de l’énergie et émettent une certaine couleur ou longueur d’onde de lumière », ont déclaré les responsables de l’ESO. Il a dit dans un communiqué.
à propos de: Vues époustouflantes de l’espace depuis le très grand télescope de l’ESO (photos)
Les astronomes ont photographié IC1284 à l’aide de la caméra grand champ de l’ESO, appelée OmegaCAM, sur le télescope d’enquête VLT (VST) en Observatoire du Paranal Au Chili. (VLT signifie « Very Large Telescope ».) Les nébuleuses sont composées d’énormes nuages de poussière et de gaz, qui alimentent le processus de formation de nouvelles étoiles. Sur la nouvelle image, la lueur rouge chaude d’IC1284 est entrecoupée d’étoiles scintillantes tout autour.
IC1284 est rejoint par deux nébuleuses à réflexion bleue, connues sous les noms de NGC6589 et NGC6590, situées dans le coin inférieur droit de la nouvelle image VST. Comparés aux nébuleuses par émission, les nuages de poussière interstellaire dans les nébuleuses par réflexion reflètent la lumière d’une ou plusieurs étoiles proches, créant la couleur bleue caractéristique observée.
« Poussière en réflexion nébuleuse « Les longueurs d’onde plus courtes et plus bleues sont préférentiellement diffusées par les étoiles proches, ce qui donne à ces nébuleuses leur étrange lueur », expliquent les responsables de l’ESO dans le communiqué. « C’est la même raison pour laquelle le ciel est bleu ! »
La nouvelle photo, publiée mardi 2 octobre, a été prise dans le cadre d’une initiative plus large organisée par elle. Éso, appelée VST H alpha Survey of the Southern Galactic Level and Swell (VPHAS+). L’enquête vise à observer les nébuleuses et les étoiles en lumière visible pour aider les astronomes à comprendre comment les étoiles naissent, vivent et meurent, selon le communiqué.
Représentation schématique du modèle de disque d’accrétion incliné. L’axe de rotation du trou noir est censé être droit de haut en bas dans cette illustration. La direction du jet est approximativement perpendiculaire au plan du disque. Le désalignement entre l’axe de rotation du trou noir et l’axe de rotation du disque fait tourner et projeter le disque. Crédit : Yuzhou Cui et al. (2023), Intouchable Lab@Openverse et Zhejiang Lab
Des chercheurs confirment la rotation de la galaxie massive M87 Le trou noir En surveillant l’oscillation dans son plan, à l’aide des données de deux décennies de radiotélescopes mondiaux. Cette découverte représente une avancée majeure dans l’étude des trous noirs.
Le trou noir supermassif au cœur de la galaxie M87, rendu célèbre par la première image de l’ombre d’un trou noir, a produit une autre première : il a été confirmé que les jets émanant du trou noir vacillaient, fournissant une preuve directe de l’existence du trou noir. Rotation.
Les trous noirs supermassifs, monstres des milliards de fois plus lourds que le soleil qui mangent tout ce qui les entoure, y compris la lumière, sont difficiles à étudier car aucune information ne peut s’échapper de l’intérieur. En théorie, il existe très peu de propriétés que nous pouvons espérer mesurer. Une propriété observable est la rotation, mais en raison des difficultés impliquées, il n’y a pas eu d’observations directes de la rotation du trou noir.
Deux décennies d’observations apportent des preuves
À la recherche de preuves de la rotation d’un trou noir, une équipe internationale a analysé les données d’observation de la galaxie M87 sur deux décennies. Située à 55 millions d’années-lumière en direction de la constellation de la Vierge, cette galaxie contient un trou noir 6,5 milliards de fois plus massif que le Soleil, le même trou noir qui a produit la première image de l’ombre d’un trou noir par le télescope Event Horizon ( ISE). ) en 2019. Le trou noir supermassif de M87 est connu pour avoir un disque d’accrétion, qui alimente le trou noir en matière, et un jet, dans lequel la matière est éjectée à proximité du trou noir à une vitesse proche de la vitesse de la lumière.
(Panneau supérieur) Cellule M87 à 43 GHz en moyenne tous les deux ans de 2013 à 2018. Les années correspondantes sont indiquées dans le coin supérieur gauche. Les flèches blanches indiquent l’angle de position du plan dans chaque sous-parcelle. (Panneau inférieur) Evolution observée de la tendance des jets entre 2000 et 2022. Les points verts et bleus ont été obtenus à partir d’observations aux fréquences 22 et 43 GHz. La ligne rouge représente une courbe sinusoïdale ajustée sur une période de 11 ans. Crédit : Yuzhou Cui et al. (2023)
L’équipe a analysé les données sur 170 périodes collectées par le réseau VLBI de l’Asie de l’Est (EAVN), le réseau de lignes de base très longues (VLBA), le réseau commun de KVN et VERA (KaVA) et le réseau presque mondial de l’Asie de l’Est vers l’Italie (EATING). ). Réseau VLBI Au total, plus de 20 radiotélescopes du monde entier ont contribué à cette étude.
Résultats et implications
Les résultats montrent que les interactions gravitationnelles entre le disque d’accrétion et la rotation du trou noir font osciller ou avancer la base du flux, de la même manière que les interactions gravitationnelles au sein du système solaire font bouger la Terre. L’équipe a réussi à relier la dynamique des flux au trou noir supermassif central, fournissant ainsi la preuve directe que le trou noir est effectivement en rotation. Le jet change de direction d’environ 10 degrés avec une précession de 11 ans, ce qui est cohérent avec les simulations théoriques du supercalculateur menées par ATERUI II à l’Observatoire astronomique national du Japon (NAOJ).
« Nous sommes satisfaits de ce résultat important », déclare Yuzhou Cui, auteur principal de l’article résumant les recherches qu’elle a commencées en tant qu’étudiante diplômée au NAOJ avant de rejoindre le laboratoire du Zhejiang en tant que chercheuse postdoctorale. « Étant donné que le désalignement entre le trou noir et le disque est relativement faible et que la période de précession est d’environ 11 ans, une collecte de données à haute résolution permettant de suivre la structure de M87 sur deux décennies et une analyse complète sont nécessaires pour obtenir ce résultat. »
« Après avoir réussi à visualiser le trou noir de cette galaxie grâce à l’EHT, la question de savoir si ce trou noir tourne ou non est devenue le principal intérêt des scientifiques », explique le Dr Kazuhiro Hada du NAOJ. « Maintenant, l’anticipation s’est transformée en certitude. Ce monstrueux trou noir est déjà en train de tourner. »
« Il s’agit d’une percée scientifique passionnante qui a finalement été révélée grâce à des années d’observations conjointes menées par une équipe internationale de chercheurs de 45 institutions à travers le monde, travaillant ensemble comme une seule équipe », a déclaré le Dr Motoki Kino de l’Université Kogakuin, coordinateur du projet VLBI. pour l’Asie de l’Est. Groupe de travail sur la science des noyaux galactiques du réseau actif. « Nos données d’observation s’adaptant parfaitement à une simple courbe sinusoïdale nous apportent de nouvelles avancées dans notre compréhension du trou noir et du système à réaction. »
Pour en savoir plus sur cette découverte, voir Vérification de la rotation d’un trou noir supermassif.
Référence : « La buse à jet se connectant à un trou noir rotatif dans M87 » par Yucho Kuei, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yusuke Mizuno, Hyunwook Ru, Markei Honma, Kono Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Chen, Evgenia Kravchenko, Juan Carlos Algaba, Xiaoping Cheng, Eli Zhou, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru Sin Lu, Kotaro Ninuma, Jungwan Oh, Ken Ohsuga, Satoko Sawada Satoh, Bong Won Son, Hiroyuki R . Takahashi, Meeko Takamura, Fumi Tazaki, Sasha Tripp, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Botaccio, Do Young-byun, Lang Kui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang Song Lee, Ji-Won Lee, Jeong-Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexei Melnikov, Carlo Migoni, Si-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Chung Chen, Jo-Yun Hwang, Dong-Kyu Jung, Heo-Ryung Kim, Jeong Suk Kim, Hideyuki Kobayashi, Bin Li, Guangwei Li, Xiaofei Li, Xiong Liu, Qinghui Liu, Xiang Liu, Chung Sik Oh, Tomoaki Aoyama, Duke Jiu Ruo, Jinqing Wang, Na Wang, Xiqiang Wang, Bo Xia, Hao Yan, Jae-hwan Yum, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongping Zhao, Yi Zhong, 27 septembre 2023, nature. est ce que je: 10.1038/s41586-023-06479-6