image : Des gouttelettes de facteurs de transcription mouillent une surface et révèlent des régions d’ADN régulatrices. Ce processus est symbolisé sur cette photographie de gouttelettes de protéine purifiée sur une surface en verre avec de l’ADN dessiné à la main au dos du verre.
voir Suite
Crédit : Mark Leaver, Jose A. Morin et Sina Wittmann, / MPI-CBG / Jose A. Morin et al. Physique de la nature, 2022
La vie commence avec une cellule. Lorsqu’un organisme se développe, les cellules en division se spécialisent pour former la variété de tissus et d’organes qui constituent le corps adulte, tout en conservant le même matériel génétique – contenu dans notre ADN. Dans un processus connu sous le nom de transcription, des parties de l’ADN – les gènes – sont copiées dans une molécule messagère – l’acide ribonucléique (ARN) – qui transporte les informations nécessaires à la production de protéines, les éléments constitutifs de la vie. Les parties de notre ADN qui sont lues et transcrites déterminent le destin de nos cellules. Les lecteurs de l’ADN sont des protéines appelées facteurs de transcription : ils se lient à des sites spécifiques de l’ADN et activent le processus de transcription. Comment reconnaissent-ils à quel endroit de l’ADN ils doivent se lier et comment ceux-ci se distinguent des autres sites de liaison aléatoires dans le génome reste une question ouverte. Des scientifiques de l’Institut Max Planck de biologie cellulaire moléculaire et de génétique (MPI-CBG) et de l’Institut Max Planck de physique des systèmes complexes (MPI-PKS), tous deux situés à Dresde, montrent que des milliers de facteurs de transcription individuels s’associent et interagissent avec l’un l’autre. Ils mouillent collectivement la surface de l’ADN en formant des gouttelettes liquides qui peuvent identifier des grappes de sites de liaison à la surface de l’ADN.
La transcription, l’un des processus cellulaires les plus fondamentaux, est l’action par laquelle l’information contenue dans l’ADN est transcrite en ARN, la molécule messagère. Ce « message » est ensuite traduit en protéines. Décider quelles parties de l’ADN sont transcrites à un moment donné est crucial pour le bon développement afin de maintenir la santé d’un organisme, car de nombreuses maladies sont susceptibles de survenir lorsque les programmes génétiques ne sont pas exécutés correctement. La décision quant aux gènes à transcrire est prise par un réseau complexe de protéines régulatrices appelées facteurs de transcription. Bien que ces facteurs se lient à de courtes séquences d’ADN, la reconnaissance de grappes de nombreuses séquences de ce type est nécessaire pour activer les gènes voisins.
Les groupes de recherche de Stephan Grill et Anthony Hyman, tous deux directeurs au MPI-CBG, et le groupe de Frank Jülicher, directeur au MPI-PKS enquêtent sur leur récente étude dans la revue Physique naturelle comment les facteurs de transcription trouvent et reconnaissent des grappes de nombreuses séquences d’ADN spécifiques où ils peuvent se lier et conduire à l’activation des gènes. Pour le savoir, les chercheurs ont suivi une approche interdisciplinaire, combinant l’expertise en biophysique expérimentale et théorique avec la biologie cellulaire. Jose A. Morin, l’un des premiers auteurs de l’étude, explique : « Nous avons utilisé des pincettes optiques – une technologie qui utilise des lasers pour isoler et manipuler de très petits objets tels que des molécules d’ADN uniques – combinées à la microscopie confocale pour les observer individuellement. Avec des pincettes optiques, il est possible de capturer une seule molécule d’ADN et avec la microscopie confocale, nous pouvons observer des facteurs de transcription se liant et formant des condensats de protéines à leurs séquences d’ADN préférées. Le fait que nous puissions étudier ce processus une molécule à la fois nous a permis de détecter des interactions autrement brouillées par la complexité de la cellule vivante. Sina Wittmann, une autre première auteure, ajoute : « Avec l’aide des physiciens, nous avons pu comprendre comment les facteurs de transcription communiquent entre eux et s’assemblent grâce à un travail d’équipe. Ils subissent ce qu’on appelle une transition de prémouillage pour former des gouttelettes de type liquide, qui ressemblent aux gouttes sur un miroir dans votre salle de bain après une douche. Ces condensats sont remplis de milliers de facteurs de transcription. Assemblés de cette manière, les facteurs de transcription peuvent désormais identifier la bonne région d’ADN en lisant la séquence d’ADN.
Stephan Grill résume : « Nous avons maintenant une explication mécaniste possible de la localisation des facteurs de transcription le long du génome. Ceci est essentiel pour comprendre comment l’expression des gènes est régulée. Sachant que cette régulation s’effondre dans les maladies du développement et le cancer, ces nouveaux résultats nous donnent une idée plus claire de la façon dont ces maladies surviennent. Cette connaissance est importante pour réfléchir à de nouvelles options thérapeutiques prenant en compte le travail d’équipe des facteurs de transcription.
———
Les laboratoires de recherche d’Anthony Hyman, Stephan Grill et Frank Jülicher sont également affiliés au Center for Systems Biology Dresden (CSBD) et au Cluster of Excellence « Physics of Life » (PoL) de la TU Dresden. Le CSBD est une coopération entre le MPI-CBG, le MPI-PKS et la TU Dresden. Dans le centre interdisciplinaire, physiciens, informaticiens, mathématiciens et biologistes travaillent ensemble pour comprendre comment les cellules coordonnent leur comportement pour former des tissus et des organes d’une forme ou d’une fonction donnée. Le pôle d’excellence PoL de TU Dresden cherche à faire la lumière sur les lois de la physique qui sous-tendent l’auto-organisation de la vie en molécules, cellules et tissus. Au sein du cluster, financé par la Deutsche Forschungsgemeinschaft (DFG, Fondation allemande pour la recherche), une équipe interdisciplinaire de scientifiques s’associe pour étudier comment la matière vivante active s’organise pour donner naissance à la vie.
Méthode de recherche
Étude expérimentale
Sujet de recherche
Cellules
Le titre de l’article
Condensation de surface dépendante de la séquence d’un facteur de transcription pionnier sur l’ADN.
Avertissement: AAAS et EurekAlert ! ne sont pas responsables de l’exactitude des communiqués de presse publiés sur EurekAlert! par les institutions contributrices ou pour l’utilisation de toute information via le système EurekAlert.
La Mars Society est sur le point de tenir sa conférence annuelle, en personne et en ligne, et vous pouvez regarder le tout virtuellement en vous inscrivant.
Vingt-sixième édition internationale Mars La conférence communautaire débute jeudi 5 octobre à l’Arizona State University à Tempe. La réunion comprend une liste d’orateurs qui parlent de sujets d’actualité Missions sur MarsTâches analogiques et plans pour l’avenir.
L’événement se déroulera quotidiennement jusqu’au dimanche (8 octobre) et les informations d’inscription seront disponibles Disponible sur cette page, gracieuseté de la Mars Society. Il y aura une diffusion en direct gratuite et accessible au public de l’événement, mais les inscrits pourront accéder aux événements en direct.
à propos de:« Nous devons aller sur Mars avant que je meure. » Lisez un extrait exclusif de « Elon Musk » du biographe Walter Isaacson
« L’événement de cette année se concentrera sur le thème » Mars pour tous « », ont écrit les représentants de la Mars Society dans un communiqué. « Alors que l’intérêt mondial et le soutien du public pour les humains sur Mars augmentent, les défenseurs de cette entreprise – y compris la Mars Society – ont développé une série d’initiatives qui permettent aux membres du public d’en apprendre davantage sur, et même d’expérimenter, l’idée d’établissement humain. sur Mars. » Planète rouge. »
Des outils en ligne permettront aux participants virtuels de soumettre des questions aux intervenants, de se connecter avec d’autres participants et de regarder la diffusion en direct. Il y aura également une démonstration en direct de MarsVR, une plateforme de réalité virtuelle open source de la Mars Society « qui peut être utilisée pour des recherches et des formations sérieuses dans le but d’envoyer des humains sur Mars ».
Une nébuleuse rouge rosé occupe le devant de la scène dans une nouvelle image de l’Observatoire européen austral (ESO).
Le nuage en expansion de poussière et de gaz, connu sous le nom d’IC1284, est une émission nébuleuseUn nuage lumineux et diffus de gaz ionisé qui émet sa propre lumière. Cette nébuleuse en émission, au centre de l’image, brille en rouge à cause de l’activité une étoile Formation et fusion d’hydrogène dans la région.
« Sa lueur rose provient des électrons des atomes d’hydrogène : ils sont excités par le rayonnement des jeunes étoiles, mais perdent ensuite de l’énergie et émettent une certaine couleur ou longueur d’onde de lumière », ont déclaré les responsables de l’ESO. Il a dit dans un communiqué.
à propos de: Vues époustouflantes de l’espace depuis le très grand télescope de l’ESO (photos)
Les astronomes ont photographié IC1284 à l’aide de la caméra grand champ de l’ESO, appelée OmegaCAM, sur le télescope d’enquête VLT (VST) en Observatoire du Paranal Au Chili. (VLT signifie « Very Large Telescope ».) Les nébuleuses sont composées d’énormes nuages de poussière et de gaz, qui alimentent le processus de formation de nouvelles étoiles. Sur la nouvelle image, la lueur rouge chaude d’IC1284 est entrecoupée d’étoiles scintillantes tout autour.
IC1284 est rejoint par deux nébuleuses à réflexion bleue, connues sous les noms de NGC6589 et NGC6590, situées dans le coin inférieur droit de la nouvelle image VST. Comparés aux nébuleuses par émission, les nuages de poussière interstellaire dans les nébuleuses par réflexion reflètent la lumière d’une ou plusieurs étoiles proches, créant la couleur bleue caractéristique observée.
« Poussière en réflexion nébuleuse « Les longueurs d’onde plus courtes et plus bleues sont préférentiellement diffusées par les étoiles proches, ce qui donne à ces nébuleuses leur étrange lueur », expliquent les responsables de l’ESO dans le communiqué. « C’est la même raison pour laquelle le ciel est bleu ! »
La nouvelle photo, publiée mardi 2 octobre, a été prise dans le cadre d’une initiative plus large organisée par elle. Éso, appelée VST H alpha Survey of the Southern Galactic Level and Swell (VPHAS+). L’enquête vise à observer les nébuleuses et les étoiles en lumière visible pour aider les astronomes à comprendre comment les étoiles naissent, vivent et meurent, selon le communiqué.
Représentation schématique du modèle de disque d’accrétion incliné. L’axe de rotation du trou noir est censé être droit de haut en bas dans cette illustration. La direction du jet est approximativement perpendiculaire au plan du disque. Le désalignement entre l’axe de rotation du trou noir et l’axe de rotation du disque fait tourner et projeter le disque. Crédit : Yuzhou Cui et al. (2023), Intouchable Lab@Openverse et Zhejiang Lab
Des chercheurs confirment la rotation de la galaxie massive M87 Le trou noir En surveillant l’oscillation dans son plan, à l’aide des données de deux décennies de radiotélescopes mondiaux. Cette découverte représente une avancée majeure dans l’étude des trous noirs.
Le trou noir supermassif au cœur de la galaxie M87, rendu célèbre par la première image de l’ombre d’un trou noir, a produit une autre première : il a été confirmé que les jets émanant du trou noir vacillaient, fournissant une preuve directe de l’existence du trou noir. Rotation.
Les trous noirs supermassifs, monstres des milliards de fois plus lourds que le soleil qui mangent tout ce qui les entoure, y compris la lumière, sont difficiles à étudier car aucune information ne peut s’échapper de l’intérieur. En théorie, il existe très peu de propriétés que nous pouvons espérer mesurer. Une propriété observable est la rotation, mais en raison des difficultés impliquées, il n’y a pas eu d’observations directes de la rotation du trou noir.
Deux décennies d’observations apportent des preuves
À la recherche de preuves de la rotation d’un trou noir, une équipe internationale a analysé les données d’observation de la galaxie M87 sur deux décennies. Située à 55 millions d’années-lumière en direction de la constellation de la Vierge, cette galaxie contient un trou noir 6,5 milliards de fois plus massif que le Soleil, le même trou noir qui a produit la première image de l’ombre d’un trou noir par le télescope Event Horizon ( ISE). ) en 2019. Le trou noir supermassif de M87 est connu pour avoir un disque d’accrétion, qui alimente le trou noir en matière, et un jet, dans lequel la matière est éjectée à proximité du trou noir à une vitesse proche de la vitesse de la lumière.
(Panneau supérieur) Cellule M87 à 43 GHz en moyenne tous les deux ans de 2013 à 2018. Les années correspondantes sont indiquées dans le coin supérieur gauche. Les flèches blanches indiquent l’angle de position du plan dans chaque sous-parcelle. (Panneau inférieur) Evolution observée de la tendance des jets entre 2000 et 2022. Les points verts et bleus ont été obtenus à partir d’observations aux fréquences 22 et 43 GHz. La ligne rouge représente une courbe sinusoïdale ajustée sur une période de 11 ans. Crédit : Yuzhou Cui et al. (2023)
L’équipe a analysé les données sur 170 périodes collectées par le réseau VLBI de l’Asie de l’Est (EAVN), le réseau de lignes de base très longues (VLBA), le réseau commun de KVN et VERA (KaVA) et le réseau presque mondial de l’Asie de l’Est vers l’Italie (EATING). ). Réseau VLBI Au total, plus de 20 radiotélescopes du monde entier ont contribué à cette étude.
Résultats et implications
Les résultats montrent que les interactions gravitationnelles entre le disque d’accrétion et la rotation du trou noir font osciller ou avancer la base du flux, de la même manière que les interactions gravitationnelles au sein du système solaire font bouger la Terre. L’équipe a réussi à relier la dynamique des flux au trou noir supermassif central, fournissant ainsi la preuve directe que le trou noir est effectivement en rotation. Le jet change de direction d’environ 10 degrés avec une précession de 11 ans, ce qui est cohérent avec les simulations théoriques du supercalculateur menées par ATERUI II à l’Observatoire astronomique national du Japon (NAOJ).
« Nous sommes satisfaits de ce résultat important », déclare Yuzhou Cui, auteur principal de l’article résumant les recherches qu’elle a commencées en tant qu’étudiante diplômée au NAOJ avant de rejoindre le laboratoire du Zhejiang en tant que chercheuse postdoctorale. « Étant donné que le désalignement entre le trou noir et le disque est relativement faible et que la période de précession est d’environ 11 ans, une collecte de données à haute résolution permettant de suivre la structure de M87 sur deux décennies et une analyse complète sont nécessaires pour obtenir ce résultat. »
« Après avoir réussi à visualiser le trou noir de cette galaxie grâce à l’EHT, la question de savoir si ce trou noir tourne ou non est devenue le principal intérêt des scientifiques », explique le Dr Kazuhiro Hada du NAOJ. « Maintenant, l’anticipation s’est transformée en certitude. Ce monstrueux trou noir est déjà en train de tourner. »
« Il s’agit d’une percée scientifique passionnante qui a finalement été révélée grâce à des années d’observations conjointes menées par une équipe internationale de chercheurs de 45 institutions à travers le monde, travaillant ensemble comme une seule équipe », a déclaré le Dr Motoki Kino de l’Université Kogakuin, coordinateur du projet VLBI. pour l’Asie de l’Est. Groupe de travail sur la science des noyaux galactiques du réseau actif. « Nos données d’observation s’adaptant parfaitement à une simple courbe sinusoïdale nous apportent de nouvelles avancées dans notre compréhension du trou noir et du système à réaction. »
Pour en savoir plus sur cette découverte, voir Vérification de la rotation d’un trou noir supermassif.
Référence : « La buse à jet se connectant à un trou noir rotatif dans M87 » par Yucho Kuei, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yusuke Mizuno, Hyunwook Ru, Markei Honma, Kono Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Chen, Evgenia Kravchenko, Juan Carlos Algaba, Xiaoping Cheng, Eli Zhou, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru Sin Lu, Kotaro Ninuma, Jungwan Oh, Ken Ohsuga, Satoko Sawada Satoh, Bong Won Son, Hiroyuki R . Takahashi, Meeko Takamura, Fumi Tazaki, Sasha Tripp, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Botaccio, Do Young-byun, Lang Kui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang Song Lee, Ji-Won Lee, Jeong-Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexei Melnikov, Carlo Migoni, Si-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Chung Chen, Jo-Yun Hwang, Dong-Kyu Jung, Heo-Ryung Kim, Jeong Suk Kim, Hideyuki Kobayashi, Bin Li, Guangwei Li, Xiaofei Li, Xiong Liu, Qinghui Liu, Xiang Liu, Chung Sik Oh, Tomoaki Aoyama, Duke Jiu Ruo, Jinqing Wang, Na Wang, Xiqiang Wang, Bo Xia, Hao Yan, Jae-hwan Yum, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongping Zhao, Yi Zhong, 27 septembre 2023, nature. est ce que je: 10.1038/s41586-023-06479-6