Connect with us

science

Les physiciens « mettent en évidence » les détails intérieurs et la désintégration du noyau simple

Published

on

Les physiciens « mettent en évidence » les détails intérieurs et la désintégration du noyau simple

Zhoudunming Tu explique la science de l’exploration des distributions de gluons et de la dissociation des deutérons dans les collisions superpériphériques de deutérons et d’ions d’or tout en parlant avec un groupe d’étudiants de l’Université de Princeton. Crédit : Yingshi Bing, Princeton

Les scientifiques ont découvert une nouvelle façon de « voir » à l’intérieur des noyaux atomiques les plus simples afin de mieux comprendre la « colle » qui maintient ensemble les éléments constitutifs de base de la matière. Les résultats viennent d’être publiés dans Lettres d’examen physiqueprovient de la collision de photons (particules de lumière) avec des deutérons, qui sont les noyaux atomiques les plus simples (constitués d’un seul proton lié à un neutron).


Les collisions se sont produites au collisionneur d’ions lourds relatifs (RHIC) du département américain de l’énergie (DOE), l’Office of Science for Research in Nuclear Physics du laboratoire national de Brookhaven du département américain de l’énergie. Des scientifiques du monde entier analysent les données des collisions subatomiques du RHIC pour mieux comprendre les particules et les forces qui construisent la matière visible de notre monde.

Dans ces collisions particulières, les photons se sont comportés un peu comme un faisceau de rayons X pour fournir le premier aperçu de la façon dont les particules appelées gluons sont disposées à l’intérieur du deutéron.

« Le gluon est très mystérieux », a déclaré Zhoudunming Tu, physicien du laboratoire de Brookhaven, qui a dirigé ce projet, à la collaboration STAR du RHIC. Les gluons, en tant que « porteurs » de la force forte*, sont la colle qui maintient ensemble les quarks, les éléments constitutifs internes des protons et des neutrons. Ils combinent également des protons et des neutrons pour former des noyaux atomiques. « Nous voulons étudier la distribution des gluons car c’est l’une des clés qui maintient les quarks ensemble. Cette mesure de la distribution des gluons dans un deutéron n’a jamais été faite auparavant. »

De plus, comme les collisions photon-deutéron entraînent parfois la désintégration des deutérons, les collisions peuvent aider les scientifiques à comprendre ce processus.

« La mesure de la dissociation du deutéron nous en dit long sur les mécanismes sous-jacents qui maintiennent ces particules ensemble dans les noyaux en général », a déclaré Tu.

Comprendre les gluons et leur rôle dans la matière nucléaire sera l’un des principaux axes de recherche du collisionneur électron-ion (EIC), une future installation de recherche en physique nucléaire en phase de planification au laboratoire de Brookhaven. À l’EIC, les physiciens utiliseront les photons générés par les électrons pour sonder la distribution des gluons dans les protons et les noyaux, ainsi que la force qui maintient les noyaux ensemble. Mais Tu, qui a élaboré des plans de recherche sur l’EIC, s’est rendu compte qu’il pourrait obtenir des indices en examinant les données existantes des expériences 2016 du RHIC sur les deutérons.

« La motivation derrière l’étude du deutéron est qu’il est simple, mais il a toujours tout ce qu’un noyau complexe a », a expliqué Tu. « Nous voulons étudier l’état le plus simple du noyau pour comprendre cette dynamique, y compris comment il change lorsque vous passez d’un simple proton à des noyaux plus complexes que nous étudierons à l’EIC. »

Il a donc commencé à passer au crible les données que STAR avait recueillies sur des centaines de millions de collisions en 2016.

« Les données étaient là. Personne n’a regardé la distribution du deutéron gluon jusqu’à ce que je commence quand j’étais un collègue de Goldhaber en 2018. Je venais de rejoindre Brookhaven, et j’ai trouvé cette connexion à l’EIC. »

Surligner

RHIC peut accélérer une large gamme d’ions –noyaux atomiques Ils sont dépouillés de leurs électrons. Il peut même envoyer des faisceaux de deux types différents de particules se déplaçant dans des directions opposées à travers les boucles jumelles de l’hippodrome de 2,4 milles de long à presque la vitesse de la lumière. Mais il ne peut pas accélérer directement les photons.

Mais grâce à la physique, qui a été abordée ici récemment, les particules en mouvement rapide avec beaucoup de charge positive émettent leur propre lumière. Ainsi, en 2016, lorsque le centre de deutéron du RHIC a percuté des ions d’or hautement chargés, ces ions d’or rapides étaient entourés de nuages ​​de photons. En identifiant les « collisions supraocéaniques » – où le deutéron n’est vu que par un nuage de photons provenant d’un ion d’or – Tu s’est rendu compte qu’il pouvait étudier Photons Interagissez avec les deutérons pour avoir un aperçu de l’intérieur.

Un signe clair de ces interactions est la production d’une particule appelée J/psi, qui est alimentée par un photon qui interagit avec les gluons à l’intérieur du deutéron.

« J’ai trouvé 350 J/psi », a déclaré Tu. « Il n’y a que 350 événements sur les centaines de millions de collisions enregistrées par l’expérience STAR. C’est en fait un événement très rare. »

Bien que J/psi se désintègre rapidement, le détecteur STAR peut suivre les produits de désintégration pour mesurer la quantité d’impulsion transférée à partir de la réaction. La mesure de la distribution du transfert d’impulsion à travers toutes les collisions permet aux scientifiques de déduire la distribution des gluons.

« Il existe une relation biunivoque entre le transfert d’impulsion (le « coup de pied » donné à J/psi) et l’endroit où se trouve le gluon dans le deutéron », a expliqué Tu. « En moyenne, les gluons à l’intérieur du noyau du deutéron donnent une très grande poussée d’impulsion. Les gluons à la périphérie donnent la plus petite poussée. Par conséquent, l’examen de la distribution globale de l’impulsion peut être utilisé pour cartographier la distribution des gluons dans le deutéron. »

« Les résultats de notre étude ont comblé une lacune dans notre compréhension de la dynamique des gluons entre le proton libre et le noyau lourd », a déclaré Shuai Yang, un collaborateur STAR de la South China Normal University. Yang était un physicien qui a été le pionnier de l’utilisation de la lumière émise par des ions en mouvement rapide pour étudier les propriétés de la matière nucléaire dans les collisions de noyaux superocéaniques au RHIC et au Large Hadron Collider (LHC) en Europe. « Ce travail jette un pont entre la physique des particules et Physique nucléaire, » il a dit.

Un autre contributeur majeur, William Schmidk de Brookhaven Lab, a déclaré: « En fait, nous étudions ce processus depuis de nombreuses années. Mais c’est le premier résultat qui nous indique la dynamique des gluons des deux nucléons individuels (le terme collectif désignant les protons et les neutrons). et des noyaux dans le même système. »

Étude de désintégration du deutéron

En plus de générer une particule J/psi, chaque interaction photon-gluon donne également une impulsion qui dévie le deutéron – ou brise ce noyau simple en un proton et un neutron. L’étude du processus de dissociation donne un aperçu de la force générée par le gluon qui maintient les noyaux ensemble.

En cas de dissociation, le proton chargé positivement est dévié dans le champ magnétique de l’accélérateur RHIC. Mais le neutron neutre continue d’avancer. Pour capturer ces « neutrons spectateurs », STAR dispose d’un détecteur situé à 18 mètres de son centre le long de la ligne de faisceau à une extrémité.

« Ce processus est très simple », a noté Tu. « Un seul J/psi est produit au centre de l’ÉTOILE. Les seules autres particules qui peuvent être formées proviennent de cette désintégration du deutéron. Ainsi, chaque fois que vous obtenez un neutron, vous savez que cela provient de la désintégration du deutéron. Le détecteur STAR peut mesurer ce processus avec plus de précision. Une carte incontestablement élevée. »

Mesurer la relation entre le processus de dissociation et la particule J/psi produite par l’interaction gluon peut aider les scientifiques à comprendre le rôle des gluons dans l’interaction entre les protons et les neutrons. Ces connaissances peuvent différer de ce que les scientifiques comprennent de ces interactions à basse énergie.

« A haute énergie, le photon ne voit presque que des gluons à l’intérieur du deutéron », a déclaré Tu. « après gluons « kick » la particule J/psi, la manière dont ce « kick » conduit à la dissociation est très probablement liée à la dynamique des gluons entre le proton et le neutron. L’avantage de cette mesure est que nous pouvons déterminer expérimentalement le canal dominé par les gluons et la dissociation nucléaire en même temps. »

En outre, Tu note que la mesure des neutrons issus de la dissociation nucléaire – communément appelée « signes de spectateur » – est une technique large et utile qui sera certainement utilisée dans les EIC à l’avenir.

Mais à l’EIC, « les appareils seront bien meilleurs et auront plus de couverture », a-t-il expliqué. « Nous pourrons améliorer la précision gluon Mesures de la distribution spatiale des noyaux légers aux noyaux lourds. Et les systèmes de détection EIC capteront à peu près tout ce qui concerne la désintégration des nucléons, afin que nous puissions étudier plus en détail comment les nucléons interagissent les uns avec les autres. « 

D’autres contributeurs majeurs qui ont collaboré pour effectuer les analyses de données complexes de cette étude comprenaient des physiciens de Brookhaven Lab, Jaroslav Adam, Zilong Chang et Thomas Ullrich.

*le une force puissante Ce sont les quatre forces fondamentales les plus puissantes de la nature (forte, faible, électromagnétique et gravitationnelle). Et contrairement à toutes les autres forces, la force d’interaction devient plus grande avec l’augmentation de la distance. La force de liaison entre deux quarks à une distance supérieure à 10-15ème mètres (c’est-à-dire au-delà d’un millionième de milliardième de mètre) plus de 10 tonnes.


Examiner les origines de la rotation du proton


Plus d’information:
MS Abdallah et al, Examen de la structure du deutéron gluon à l’aide de J / photoproduction dans des collisions super-terminales d + Au, Lettres d’examen physique (2022). DOI : 10.1103/ PhysRevLett.128.122303

la citation: Les physiciens font la lumière sur les détails internes et la rupture du noyau simple (2022, 24 mars), récupéré le 24 mars 2022 sur https://phys.org/news/2022-03-physicists-breakup-simple-nucleus.html

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  Des chercheurs découvrent un moyen d'améliorer l'édition de gènes non viraux ainsi qu'un nouveau type de réparation de l'ADN
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Tester une nouvelle technologie de cartographie 3D pour transformer l’exploration spatiale et bénéficier aux industries sur Terre

Published

on

Tester une nouvelle technologie de cartographie 3D pour transformer l’exploration spatiale et bénéficier aux industries sur Terre

Centre spatial Kennedy, Floride., 26 avril 2024 /PRNewswire/ — Lorsque vous partez en voyage, vous pouvez rechercher une carte pour vous aider à naviguer dans votre voyage ou allumer le GPS sur votre téléphone. Mais que se passe-t-il si la destination est sur une autre planète et qu’il n’y a pas de carte ? Un nouveau projet parrainé par le Laboratoire national de la Station spatiale internationale (ISS) peut aider. Cette enquête, appelée Multi-Resolution Scanner (MRS), exploitera le système robotique volant libre Astrobee de la NASA sur la station spatiale pour tester une nouvelle technologie de cartographie 3D capable de produire des cartes détaillées d'environnements distants.

Le projet, une collaboration entre Boeing et le CSIRO (une agence gouvernementale australienne responsable de la recherche scientifique), souligne l'importance des partenariats internationaux tout en s'appuyant sur la riche histoire du duo dans l'industrie spatiale mondiale. comme Australie L'agence scientifique nationale, le CSIRO, a contribué de manière significative au secteur spatial. Par exemple, lors de l'alunissage d'Apollo 11 en 1969, le radiotélescope Parkes du CSIRO, Moreang, a reçu des signaux de télévision de cet événement historique qui ont été regardés par près de 600 millions de téléspectateurs dans le monde. Aujourd’hui, l’organisation travaille sur un projet qui profitera non seulement aux futures missions d’exploration, mais également aux principales industries de la planète.

MRS est conçu pour créer rapidement des cartes 3D de divers environnements avec des détails sans précédent, comme une station spatiale ou même un tube de lave sur la Lune ou sur Mars. « Nous utiliserons les robots volants libres Astrobee de la NASA pour tester le MRS, ce qui nous permettra de créer des cartes 3D du module Kibo de la station spatiale », a déclaré Mark Elmotti, chef du groupe de recherche au CSIRO. « La technologie que nous utilisons combine plusieurs capteurs, ce qui compense les faiblesses de chacun d'entre eux et fournit des données de trajectoire 3D haute résolution et plus précises pour comprendre comment le robot se déplace dans l'espace. »

READ  Une éruption intense sur de jeunes étoiles semblables au Soleil suggère un environnement brutal pour le développement exoplanétaire

Que ce soit à bord de la station spatiale ou à la surface de Mars, les explorateurs robotiques doivent utiliser des capteurs embarqués et des algorithmes de perception pour construire des cartes détaillées de l'environnement tout en déterminant simultanément leur emplacement au sein de celui-ci. Cette capacité est appelée localisation et mappage simultanés, ou SLAM. MRS s'appuie sur un logiciel de photogrammétrie avancé appelé Stereo-Depth Fusion et sur la technologie 3D SLAM, que le CSIRO appelle Wildcat. Le logiciel permet au MRS de cartographier, d’analyser et de naviguer de manière indépendante dans son environnement.

Pour vérifier que le programme fonctionne dans l'espace, Elmuti et son équipe cartographient un emplacement connu sur la station spatiale : le module Kibo. L'enquête sur la station spatiale a débuté en mars La 30e mission de services de réapprovisionnement commercial (CRS) de SpaceX, sous contrat avec la NASA. Une fois arrivé à la station, le MRS a été installé dans l'un des trois robots Astrobee.

Commencer avec Kibo permet à l’équipe de vérifier les cartes résultantes et de les comparer avec des contrôles pour voir dans quelle mesure la technologie fonctionne en microgravité. Des expériences au sol antérieures ont montré que les capacités de cartographie et de positionnement très précises du logiciel peuvent permettre à des robots comme Astrobee de naviguer avec succès dans des environnements dangereux, complexes et non structurés sans GPS ou autres informations de positionnement externes.

En cas de succès, MRS pourrait s'étendre à d'autres modules de la station spatiale, augmentant ainsi ses capacités de cartographie. Les résultats de cette enquête contribueront à faire progresser la technologie au point où elle pourra être utilisée dans les futures missions de vols spatiaux et les efforts d’exploration. La Station spatiale internationale est habitée en permanence depuis plus de 20 ans, mais les futures stations spatiales ne seront peut-être pas toutes habitées par des humains. La passerelle lunaire prévue par la NASA, ainsi que d'autres avant-postes dans l'espace, pourraient être peuplés principalement de robots. Cette technologie permettra aux assistants robotiques de maintenir les systèmes en fonctionnement autonome lorsque les humains ne sont pas là.

READ  La lune de l'étoile de la mort de Saturne cache un océan souterrain "furtif"

« Boeing s'engage à fournir des capacités améliorées et une sécurité renforcée pour les vols vers la Lune et au-delà », a-t-elle déclaré. Scott CopelandDirecteur de l'intégration de la recherche sur la Station spatiale internationale chez Boeing. « Cela nécessite l'intersection des missions de l'équipage et des robots, et la technologie de numérisation multi-résolution démontrée à bord de notre banc d'essai en orbite terrestre basse sera un outil puissant pour nous aider à atteindre ces objectifs. »

Nous verrons peut-être un jour une version du MRS sur d’autres planètes, installée sur des rovers ou des hélicoptères qui utilisent cette technologie pour cartographier le terrain et explorer des ressources précieuses. MRS peut également identifier les dommages potentiels causés aux engins spatiaux dus à des micrométéorites ou à d’autres impacts, ce qui est particulièrement utile sur les sites sans équipage de manière continue, renforçant ainsi la valeur des robots soignants. La technologie MRS peut également bénéficier à de nombreuses industries sur Terre, telles que l’exploitation minière et les secours en cas de catastrophe.

Apprenez-en davantage sur Astrobees et sur la manière dont d'autres enquêtes parrainées par le Laboratoire national de l'ISS utilisent des assistants robotiques dans le dernier numéro de en haut®le journal officiel du Laboratoire national de la Station spatiale internationale. est en train de lire « Robots volants libres dans l'espace : comment de vrais robots testent les nouvelles technologies. »

Pour télécharger une image haute résolution de cette version, cliquer ici.

À propos du Laboratoire national de la Station spatiale internationale :
La Station spatiale internationale (ISS) est un laboratoire unique qui permet des recherches et des développements technologiques impossibles sur Terre. En tant qu'institution de service public, le Laboratoire national de l'ISS permet aux chercheurs de tirer parti de cette installation multi-utilisateurs pour améliorer la qualité de vie sur Terre, faire évoluer les modèles commerciaux spatiaux, faire progresser les connaissances scientifiques de la main-d'œuvre future et développer un marché durable et évolutif dans les pays à faible revenu. pays à revenus. L'orbite terrestre. Grâce à ce laboratoire national en orbite, les ressources de recherche de l'ISS sont disponibles pour soutenir les initiatives scientifiques, technologiques et éducatives non-NASA émanant d'agences gouvernementales américaines, d'établissements universitaires et du secteur privé. Le Centre pour l'avancement de la science dans l'espace (CASIS™) gère le Laboratoire national de la Station spatiale internationale, dans le cadre d'un accord de coopération avec la NASA, facilitant l'accès à un environnement de recherche permanent en microgravité, à un point d'observation puissant en orbite terrestre basse et à des conditions difficiles. et des conditions diverses. depuis l'espace. Pour en savoir plus sur le Laboratoire national de la Station spatiale internationale, visitez Notre emplacement.

READ  Les fourmis et leurs ancêtres partagent des structures corporelles étonnamment similaires

En tant qu'organisation à but non lucratif de type 501(c)(3), CASIS accepte les dons d'entreprises et de particuliers pour contribuer à faire progresser la science dans l'espace au profit de l'humanité. Pour plus d'informations, visitez notre site web Page de dons.


Laboratoire national de la Station spatiale internationale (ISS).
Géré par le Centre pour l'avancement des sciences dans l'espace (CASIS)

6905 N. Wickham Road, Suite 500, Melbourne, FL 32940 · 321.253.5101 · www.ISSNationalLab.org

Source : Laboratoire national de la Station spatiale internationale

Continue Reading

science

Jupiter a-t-il des anneaux ? Oui elle est comme ça

Published

on

Jupiter a-t-il des anneaux ?  Oui elle est comme ça

Nous connaissons tous les anneaux magiques de Saturne, mais Jupiter a-t-il des anneaux ? Oui elle est comme ça.

Eh bien, Jupiter n'a pas de grands anneaux clairement définis comme celui de Saturne, mais ils existent.

En fait, les anneaux de Jupiter sont si faibles qu'ils sont invisibles à l'œil nu et extrêmement difficiles à détecter, même avec des télescopes puissants. Mais ils sont bel et bien là.

Ils ont été observés et photographiés par les vaisseaux spatiaux Voyager et Galileo, la mission Cassini, le télescope Keck et, plus récemment, par le télescope spatial James Webb.

Les anneaux de Jupiter apparaissent sous la forme de deux lignes orange clair, capturées par Voyager 2 à une distance de 1 450 000 kilomètres (900 000 miles). Cliquez pour agrandir. Crédit : NASA/JPL

Combien d’anneaux Jupiter a-t-il ?

Jupiter possède quatre structures annulaires principales.

En regardant vers l'extérieur de la planète elle-même, il y a un épais « anneau corona » intérieur, d'une épaisseur de 12 500 km.

Puis « l'anneau principal » qui est très brillant et très fin, seulement 30 kilomètres d'épaisseur par endroits.

Et deux « anneaux fins » épais mais très ternes.

L'anneau aréolaire est de couleur neutre ou bleuâtre, tandis que les anneaux principal et filamenteux ont une couleur rougeâtre.

Diagramme de marque NASA montrant la structure du système d'anneaux de Jupiter.  Jupiter possède quatre structures en anneaux au total.  Source : NASA/JPL/Université Cornell
Diagramme de marque NASA montrant la structure du système d'anneaux de Jupiter. Jupiter possède quatre structures en anneaux au total. Cliquez pour agrandir. Source : NASA/JPL/Université Cornell

Formation des anneaux de Jupiter

On pense que les anneaux entourant Jupiter sont constitués de matériaux – principalement sous la forme de très fines particules de poussière – précédemment éjectés des lunes Metis et Adrastia à la suite de collisions avec des astéroïdes, des météorites ou des comètes.

La question de savoir si les anneaux sont aussi vieux que Jupiter lui-même ou s'ils se sont formés plus tard est une question à laquelle on n'a pas encore répondu.

La large bande de lumière traversant en diagonale le centre de cette image est la première preuve des anneaux de Jupiter, vus par le vaisseau spatial Voyager 1 le 4 mars 1979. Le bord de l'anneau était à 1 212 000 km du vaisseau spatial et à 57 000 km du nuage visible à la surface de Jupiter.  Les lignes bancales sont des étoiles d’arrière-plan dont l’apparence est affectée par le mouvement du vaisseau spatial.  Crédit : NASA/JPL
La large bande de lumière traversant en diagonale le centre de cette image est la première preuve des anneaux de Jupiter, que Voyager 1 a vus le 4 mars 1979. Le bord de l'anneau était à 1 212 000 km du vaisseau spatial et à 57 000 km de la surface visible des nuages ​​de Jupiter. . . Les lignes bancales sont des étoiles d’arrière-plan dont l’apparence est affectée par le mouvement du vaisseau spatial. Cliquez pour agrandir. Crédit : NASA/JPL

Découverte

Les anneaux de Jupiter sont si faibles que nous n'avions aucune idée de leur existence jusqu'à ce que les images soient renvoyées par la sonde spatiale Voyager 1 en 1979.

READ  Le télescope Webb met au point les premières galaxies et Jupiter

Ce que nous en savons aujourd'hui provient principalement des images supplémentaires réalisées par les missions Galileo et Cassini de la NASA à la fin des années 1990 et au début des années 2000, ainsi que des observations faites par le télescope spatial Hubble et le télescope Keck au sol.

Les scientifiques pensent maintenant que c'est la gravité des quatre grandes lunes galiléennes de Jupiter (Ganymède, Callisto, Io et Europe) qui a empêché Jupiter de former de grands anneaux sophistiqués comme ceux entourant sa voisine géante gazeuse, Saturne.

Photos des anneaux de Jupiter

Continue Reading

science

Les astronautes sont ravis d'effectuer le premier vol d'essai à bord du vaisseau spatial Starliner de Boeing

Published

on

Les astronautes sont ravis d'effectuer le premier vol d'essai à bord du vaisseau spatial Starliner de Boeing

Deux astronautes vétérans se sont rendus au Centre spatial Kennedy jeudi après-midi pour préparer le premier lancement d'essai du vaisseau spatial Starliner de Boeing, un vol très attendu depuis des années. En retard Après deux Vols d'essai sans pilote Et un travail approfondi pour résoudre une variété de problèmes techniques.

Les astronautes Barry « Butch » Wilmore et Sunita Williams, deux des astronautes les plus expérimentés de la NASA avec quatre vols spatiaux précédents, 11 sorties dans l'espace et 500 jours en orbite entre ces périodes, ont atterri sur la piste de 3 miles de long du port spatial à bord d'un avion d'entraînement à réaction T-38. après le vol. Du Centre spatial Johnson à Houston.

Le commandant du Starliner Barry « Butch » Wilmore (à droite) et la pilote Sunita Williams (à gauche) se sont rendus jeudi au Centre spatial Kennedy pour préparer le premier lancement test du vaisseau spatial vers la Station spatiale internationale le 6 mai.

NASA/Frank Michaud


« Nous aimons la Floride », a déclaré Wilmore aux journalistes sur la piste, « Nous aimons le Kennedy Space Center, parce que c'est là que vous lancez des gens dans l'espace. » « Dans moins de deux semaines, le prochain vol que nous prendrons se fera sur notre dos et prendra son envol. »

L'achèvement du vol d'essai de l'équipage Starliner, ou CFT, « augmentera la capacité (de la NASA) vers et depuis la station spatiale, et c'est essentiel », a-t-il déclaré. «Nous sommes ravis d'être ici.»

« C'est là que le caoutchouc rencontre la route », a déclaré Williams, « et là où nous quittons cette planète, et c'est plutôt cool ! »

Quelques heures après l'arrivée de l'équipage, et peu après que deux astronautes russes ont effectué une sortie dans l'espace de quatre heures et 36 minutes à l'extérieur de la Station spatiale internationale, les chefs de mission ont effectué un examen de préparation au vol de deux jours, autorisant provisoirement le lancement du véhicule Starliner à bord de l'avion. Véhicule de lancement uni. Fusée Alliance Atlas 5 à 22 h 34 HAE le lundi 6 mai.

Si tout va bien, Wilmore et WilliamsTous deux anciens pilotes d'essai de la Marine, ils accosteront à la station spatiale le 8 mai et reviendront sur Terre le 15 mai ou peu après. Si la mission se déroule bien, la NASA prévoit de commencer les vols opérationnels de rotation de l'équipage du Starliner en 2025, en alternance avec SpaceX.

« Aujourd'hui a été un grand jour pour notre programme d'équipage commercial », a déclaré Steve Stich, administrateur du CCP de la NASA. « Tous les partenaires (internationaux), puis toute notre équipe, ont mené une enquête préalable pour procéder au lancement le 6 mai. De plus, nous avons (signé) ce que nous appelons la qualification humaine provisoire pour Starliner pour ce vol avec équipage. test. C’était une grosse affaire pour la NASA et toute notre équipe.

Le vaisseau spatial Starliner est abaissé au sommet d'une fusée United Launch Alliance Atlas 5 au complexe de lancement 41 de la station spatiale de Cap Canaveral.

Al-Ula


La NASA a attribué deux contrats pour le programme d'équipage commercial en 2014, l'un à SpaceX d'une valeur de 2,6 milliards de dollars et l'autre à Boeing d'une valeur de 4,2 milliards de dollars, pour stimuler le développement d'engins spatiaux autonomes capables de transporter des astronautes vers et depuis la Station spatiale internationale.

L’objectif était de mettre fin à la dépendance à l’égard du vaisseau spatial russe Soyouz après le retrait de la navette spatiale et de reprendre le lancement d’astronautes américains depuis le sol américain à bord de fusées et d’engins spatiaux américains. Il est tout aussi important pour la NASA de disposer de deux vaisseaux spatiaux indépendants pour les vols d'équipage vers la Station spatiale internationale au cas où le ferry d'une entreprise s'arrêterait avant la Terre pour une raison quelconque.

SpaceX a commencé les vols d'essai en mai 2020, lançant avec succès deux astronautes de la NASA lors d'un vol d'essai Crew Dragon vers la station spatiale. Depuis lors, SpaceX a lancé 50 astronautes, astronautes et civils en orbite sur huit vols opérationnels vers le complexe de laboratoires, trois visites commerciales et un vol financé par des fonds privés vers une orbite terrestre basse.

Boeing a lancé son Starliner dans un avion Vol d'essai sans pilote En décembre 2019, le vaisseau spatial a rencontré des problèmes logiciels et de communication majeurs qui se sont combinés pour entraver la tentative d'amarrage à la station spatiale et ont presque conduit à la destruction du vaisseau de l'équipage.

une Le deuxième vol sans pilote Il a été commandé (et payé par Boeing), mais lors de la fenêtre de lancement d'août 2021, les ingénieurs des fenêtres ont découvert des valves corrodées dans le système de propulsion du vaisseau spatial. La résolution de ce problème a retardé le deuxième vol d’essai jusqu’en mai 2022.

Bien que la mission ait été un succès, d'autres problèmes ont été découverts, notamment des problèmes de parachute et des inquiétudes concernant la possibilité que le ruban de protection enroulé autour du câblage interne s'enflamme. La correction de ces problèmes et la recherche d'une place pour la visite dans le programme de vol complexe de la station spatiale ont finalement retardé le test en vol de l'équipage au 6 mai.

Accorder Problèmes récents Avec des avions Boeing qui ont soulevé des questions sur l'entreprise Culture de sécuritéLe test en vol réussi de l'équipage est considéré par beaucoup comme une étape cruciale pour Boeing et le programme d'équipage commercial de la NASA.

Pour sa part, Wilmore a déclaré qu'il ne considérait pas le lancement du Starliner dans le contexte des problèmes de l'avion largement rapportés par Boeing.

Vue d'artiste du vaisseau spatial Starliner lors de son approche finale vers la Station spatiale internationale.

NASA


« Je ne pense pas qu'il s'agisse nécessairement de Boeing ou d'un vol », a-t-il déclaré. « Ils sont tous d'une importance vitale. Il s'agit des vols spatiaux habités. Cet adage que vous avez entendu depuis Apollo 13, selon lequel l'échec n'est pas une option ? Cela n'a rien à voir spécifiquement avec Boeing ou ce programme. Ce sont toutes les choses que nous faisons dans l'espace humain. vol spatial. » .

« Donc, ce n’est ni plus ni moins important que tout ce que nous faisons », a-t-il déclaré. « Il se trouve que c'est la chose la plus importante que nous faisons en ce moment. »

« Le succès de cette mission a toujours été très important pour nous en tant que programme pour de nombreuses raisons », a reconnu Mark Nappi, responsable du programme Starliner de Boeing.

« Premièrement, nous avons des humains qui pilotent ce véhicule », a-t-il déclaré. « Nous prenons cela très au sérieux dans le domaine des vols spatiaux habités. J'ai passé ma carrière dans ce secteur et cela a toujours été en tête de liste. »

« Deuxièmement, il s'agit d'une capacité importante pour nous et pour la NASA, c'est pourquoi nous nous sommes engagés à le faire, et nous allons le faire et y parvenir. Je n'y pense donc pas en termes de ce qui est important pour Boeing. autant j'y pense en termes de ce qui est important pour ce programme, ce qui est important « Donner suite aux engagements que nous avons pris envers nos clients ».

READ  Une éruption intense sur de jeunes étoiles semblables au Soleil suggère un environnement brutal pour le développement exoplanétaire
Continue Reading

Trending

Copyright © 2023