Zhoudunming Tu explique la science de l’exploration des distributions de gluons et de la dissociation des deutérons dans les collisions superpériphériques de deutérons et d’ions d’or tout en parlant avec un groupe d’étudiants de l’Université de Princeton. Crédit : Yingshi Bing, Princeton
Les scientifiques ont découvert une nouvelle façon de « voir » à l’intérieur des noyaux atomiques les plus simples afin de mieux comprendre la « colle » qui maintient ensemble les éléments constitutifs de base de la matière. Les résultats viennent d’être publiés dans Lettres d’examen physiqueprovient de la collision de photons (particules de lumière) avec des deutérons, qui sont les noyaux atomiques les plus simples (constitués d’un seul proton lié à un neutron).
Les collisions se sont produites au collisionneur d’ions lourds relatifs (RHIC) du département américain de l’énergie (DOE), l’Office of Science for Research in Nuclear Physics du laboratoire national de Brookhaven du département américain de l’énergie. Des scientifiques du monde entier analysent les données des collisions subatomiques du RHIC pour mieux comprendre les particules et les forces qui construisent la matière visible de notre monde.
Dans ces collisions particulières, les photons se sont comportés un peu comme un faisceau de rayons X pour fournir le premier aperçu de la façon dont les particules appelées gluons sont disposées à l’intérieur du deutéron.
« Le gluon est très mystérieux », a déclaré Zhoudunming Tu, physicien du laboratoire de Brookhaven, qui a dirigé ce projet, à la collaboration STAR du RHIC. Les gluons, en tant que « porteurs » de la force forte*, sont la colle qui maintient ensemble les quarks, les éléments constitutifs internes des protons et des neutrons. Ils combinent également des protons et des neutrons pour former des noyaux atomiques. « Nous voulons étudier la distribution des gluons car c’est l’une des clés qui maintient les quarks ensemble. Cette mesure de la distribution des gluons dans un deutéron n’a jamais été faite auparavant. »
De plus, comme les collisions photon-deutéron entraînent parfois la désintégration des deutérons, les collisions peuvent aider les scientifiques à comprendre ce processus.
« La mesure de la dissociation du deutéron nous en dit long sur les mécanismes sous-jacents qui maintiennent ces particules ensemble dans les noyaux en général », a déclaré Tu.
Comprendre les gluons et leur rôle dans la matière nucléaire sera l’un des principaux axes de recherche du collisionneur électron-ion (EIC), une future installation de recherche en physique nucléaire en phase de planification au laboratoire de Brookhaven. À l’EIC, les physiciens utiliseront les photons générés par les électrons pour sonder la distribution des gluons dans les protons et les noyaux, ainsi que la force qui maintient les noyaux ensemble. Mais Tu, qui a élaboré des plans de recherche sur l’EIC, s’est rendu compte qu’il pourrait obtenir des indices en examinant les données existantes des expériences 2016 du RHIC sur les deutérons.
« La motivation derrière l’étude du deutéron est qu’il est simple, mais il a toujours tout ce qu’un noyau complexe a », a expliqué Tu. « Nous voulons étudier l’état le plus simple du noyau pour comprendre cette dynamique, y compris comment il change lorsque vous passez d’un simple proton à des noyaux plus complexes que nous étudierons à l’EIC. »
Il a donc commencé à passer au crible les données que STAR avait recueillies sur des centaines de millions de collisions en 2016.
« Les données étaient là. Personne n’a regardé la distribution du deutéron gluon jusqu’à ce que je commence quand j’étais un collègue de Goldhaber en 2018. Je venais de rejoindre Brookhaven, et j’ai trouvé cette connexion à l’EIC. »
Surligner
RHIC peut accélérer une large gamme d’ions –noyaux atomiques Ils sont dépouillés de leurs électrons. Il peut même envoyer des faisceaux de deux types différents de particules se déplaçant dans des directions opposées à travers les boucles jumelles de l’hippodrome de 2,4 milles de long à presque la vitesse de la lumière. Mais il ne peut pas accélérer directement les photons.
Mais grâce à la physique, qui a été abordée ici récemment, les particules en mouvement rapide avec beaucoup de charge positive émettent leur propre lumière. Ainsi, en 2016, lorsque le centre de deutéron du RHIC a percuté des ions d’or hautement chargés, ces ions d’or rapides étaient entourés de nuages de photons. En identifiant les « collisions supraocéaniques » – où le deutéron n’est vu que par un nuage de photons provenant d’un ion d’or – Tu s’est rendu compte qu’il pouvait étudier Photons Interagissez avec les deutérons pour avoir un aperçu de l’intérieur.
Un signe clair de ces interactions est la production d’une particule appelée J/psi, qui est alimentée par un photon qui interagit avec les gluons à l’intérieur du deutéron.
« J’ai trouvé 350 J/psi », a déclaré Tu. « Il n’y a que 350 événements sur les centaines de millions de collisions enregistrées par l’expérience STAR. C’est en fait un événement très rare. »
Bien que J/psi se désintègre rapidement, le détecteur STAR peut suivre les produits de désintégration pour mesurer la quantité d’impulsion transférée à partir de la réaction. La mesure de la distribution du transfert d’impulsion à travers toutes les collisions permet aux scientifiques de déduire la distribution des gluons.
« Il existe une relation biunivoque entre le transfert d’impulsion (le « coup de pied » donné à J/psi) et l’endroit où se trouve le gluon dans le deutéron », a expliqué Tu. « En moyenne, les gluons à l’intérieur du noyau du deutéron donnent une très grande poussée d’impulsion. Les gluons à la périphérie donnent la plus petite poussée. Par conséquent, l’examen de la distribution globale de l’impulsion peut être utilisé pour cartographier la distribution des gluons dans le deutéron. »
« Les résultats de notre étude ont comblé une lacune dans notre compréhension de la dynamique des gluons entre le proton libre et le noyau lourd », a déclaré Shuai Yang, un collaborateur STAR de la South China Normal University. Yang était un physicien qui a été le pionnier de l’utilisation de la lumière émise par des ions en mouvement rapide pour étudier les propriétés de la matière nucléaire dans les collisions de noyaux superocéaniques au RHIC et au Large Hadron Collider (LHC) en Europe. « Ce travail jette un pont entre la physique des particules et Physique nucléaire, » il a dit.
Un autre contributeur majeur, William Schmidk de Brookhaven Lab, a déclaré: « En fait, nous étudions ce processus depuis de nombreuses années. Mais c’est le premier résultat qui nous indique la dynamique des gluons des deux nucléons individuels (le terme collectif désignant les protons et les neutrons). et des noyaux dans le même système. »
Étude de désintégration du deutéron
En plus de générer une particule J/psi, chaque interaction photon-gluon donne également une impulsion qui dévie le deutéron – ou brise ce noyau simple en un proton et un neutron. L’étude du processus de dissociation donne un aperçu de la force générée par le gluon qui maintient les noyaux ensemble.
En cas de dissociation, le proton chargé positivement est dévié dans le champ magnétique de l’accélérateur RHIC. Mais le neutron neutre continue d’avancer. Pour capturer ces « neutrons spectateurs », STAR dispose d’un détecteur situé à 18 mètres de son centre le long de la ligne de faisceau à une extrémité.
« Ce processus est très simple », a noté Tu. « Un seul J/psi est produit au centre de l’ÉTOILE. Les seules autres particules qui peuvent être formées proviennent de cette désintégration du deutéron. Ainsi, chaque fois que vous obtenez un neutron, vous savez que cela provient de la désintégration du deutéron. Le détecteur STAR peut mesurer ce processus avec plus de précision. Une carte incontestablement élevée. »
Mesurer la relation entre le processus de dissociation et la particule J/psi produite par l’interaction gluon peut aider les scientifiques à comprendre le rôle des gluons dans l’interaction entre les protons et les neutrons. Ces connaissances peuvent différer de ce que les scientifiques comprennent de ces interactions à basse énergie.
« A haute énergie, le photon ne voit presque que des gluons à l’intérieur du deutéron », a déclaré Tu. « après gluons « kick » la particule J/psi, la manière dont ce « kick » conduit à la dissociation est très probablement liée à la dynamique des gluons entre le proton et le neutron. L’avantage de cette mesure est que nous pouvons déterminer expérimentalement le canal dominé par les gluons et la dissociation nucléaire en même temps. »
En outre, Tu note que la mesure des neutrons issus de la dissociation nucléaire – communément appelée « signes de spectateur » – est une technique large et utile qui sera certainement utilisée dans les EIC à l’avenir.
Mais à l’EIC, « les appareils seront bien meilleurs et auront plus de couverture », a-t-il expliqué. « Nous pourrons améliorer la précision gluon Mesures de la distribution spatiale des noyaux légers aux noyaux lourds. Et les systèmes de détection EIC capteront à peu près tout ce qui concerne la désintégration des nucléons, afin que nous puissions étudier plus en détail comment les nucléons interagissent les uns avec les autres. «
D’autres contributeurs majeurs qui ont collaboré pour effectuer les analyses de données complexes de cette étude comprenaient des physiciens de Brookhaven Lab, Jaroslav Adam, Zilong Chang et Thomas Ullrich.
*le une force puissante Ce sont les quatre forces fondamentales les plus puissantes de la nature (forte, faible, électromagnétique et gravitationnelle). Et contrairement à toutes les autres forces, la force d’interaction devient plus grande avec l’augmentation de la distance. La force de liaison entre deux quarks à une distance supérieure à 10-15ème mètres (c’est-à-dire au-delà d’un millionième de milliardième de mètre) plus de 10 tonnes.
Plus d’information:
MS Abdallah et al, Examen de la structure du deutéron gluon à l’aide de J / photoproduction dans des collisions super-terminales d + Au, Lettres d’examen physique (2022). DOI : 10.1103/ PhysRevLett.128.122303
la citation: Les physiciens font la lumière sur les détails internes et la rupture du noyau simple (2022, 24 mars), récupéré le 24 mars 2022 sur https://phys.org/news/2022-03-physicists-breakup-simple-nucleus.html
Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.
Il est seul dans le système solaire externe gelé. Le samedi 9 décembre, la comète la plus célèbre de tous les temps, 1P/Halley, franchit une étape importante dans son voyage de 75 ans à travers le système solaire, atteignant l’apogée, ou le point le plus éloigné du soleil.
Comète maintenant
On pourrait dire que décembre 2023 marque le point médian entre la fin de 1986 et la prochaine apparition de la comète en 2061.
Personne n’a vu la comète de Halley depuis Le très grand télescope de l’Observatoire européen austral Elle a été photographiée il y a une génération, en 2003. À cette époque, elle mesurait 28 unités astronomiques (UA) à une magnitude de +28.
Le moment exact de l’apogée se produit à 1h00 Temps universel (TU) le 9 décembre (20h00 HNE le vendredi soir 8). À ce stade, la comète de Halley se trouvera à 35,14 unités astronomiques (environ 3,3 milliards de milles ou 5,3 milliards de kilomètres) du Soleil.
Cela place la comète en dehors de l’orbite de Neptune, brillant à une magnitude de +35 dans la constellation méridionale de l’Hydre. La comète se déplacera également à sa vitesse la plus lente, à 0,91 kilomètre par seconde, ou 2 000 milles par heure, par rapport au Soleil.
L’emplacement actuel de la comète de Halley dans le ciel. (stellarium)
Cela place la comète hors de portée des grands télescopes amateurs ou même professionnels. Au moment de la rédaction de cet article, la NASA n’avait pas annoncé son intention d’imager Halley à son apogée avec Hubble ou le télescope spatial James Webb. Il y aurait certainement peu d’avantages scientifiques à cela, si ce n’est de pousser les télescopes spatiaux dans leurs retranchements.
« J’ai jeté un coup d’œil rapide aux programmes HST et JWST approuvés et je n’en vois aucun qui envisage d’observer la comète de Halley, que ce soit par imagerie ou par spectroscopie. » Christine Bolam (Institut scientifique du télescope spatial de la NASA) a déclaré à Universe Today.
Une brève histoire de la comète de Halley
La comète de Halley a certainement marqué l’histoire. Sir Edmund Halley a remarqué pour la première fois les apparitions fréquentes de la comète en 1696 et a lié une apparition à une autre. Halley a prédit avec succès le retour de la comète qui porte aujourd’hui son nom en 1758, bien qu’il n’ait pas vécu assez longtemps pour la voir.
Le « 1P » dans son nom fait référence au fait que la comète de Halley a été la première comète périodique découverte. Les comètes périodiques ont des orbites inférieures à 200 ans. À ce jour, il existe 472 comètes périodiques connues. À mesure que les études du ciel s’approfondissent sur l’échelle de taille, nous découvrons des comètes périodiques de plus faible luminosité et, très probablement, nous avons trouvé toutes les « grandes » comètes.
Notes chinoises La comète de Halley Cela remonte à 467 avant JC. L’apparition de la comète en 1066 a été largement observée dans le monde entier. Son apparition a été considérée comme un présage précédant la mort du roi Harold II à la bataille d’Hastings et l’ascension de Guillaume le Conquérant au trône.
Une anecdote (peut-être apocryphe) affirme que le pape Callixte III « Disqualifié« La comète sert d’avertissement contre l’empiétement de l’Empire ottoman sur l’Europe de l’Est.
L’écrivain américain Mark Twain est également célèbre pour la comète de Halley. Twain est né en 1835 lors de l’apparition d’une comète, et Attendez-vous à ce que ça passe La prochaine comète apparaissant en 1910. (Alerte spoiler : c’est le cas.)
Apparitions modernes
En parlant de cela, l’attente pour la comète de Halley cette année-là a été éclipsée par l’une des plus grandes comètes du 20e siècle : Grande comète de 1910.
En fait, ceux qui se souviennent de la comète de Halley en 1910 ont peut-être vu la grande comète quelques mois plus tôt. La découverte de gaz cyanogène toxique dans la queue de la comète grâce à la spectroscopie moderne a déclenché la Grande Peur des Comètes de 1910.
Malheureusement, l’apparition de Halley en 1986 a été quelque peu décevante, apparaissant basse au sud à l’aube. Cependant, trois missions spatiales ont été envoyées à Halley, la toute première rencontre avec une comète. Ces véhicules étaient les Vega 1 et 2 de l’Union soviétique et le Gioto de l’Agence spatiale européenne.
Mission Giotto de l’ESA vers la comète de Halley. (Agence spatiale européenne)
Deux pluies de météores annuelles sont également associées à Halley : avril et mai, Eta Aquaridus et… Orionide d’octobre.
Assis à la surface de la comète de Halley ce week-end, le Soleil se lèvera à -19 degrés. C’est seulement environ 250 fois plus lumineux que la pleine lune.
La comète de Halley dans les années à venir
De notre point de vue terrestre, la comète passera les prochaines décennies dans la constellation de l’Hydre et du Canis Minor. La comète passera près de l’étoile brillante Procyon en 2050.
La comète de Halley atteindra ensuite son périhélie le 28 juillet 2061 et pourrait dépasser les magnitudes négatives dans les mois suivants. En septembre 2061, Halley apparaîtra basse au nord-ouest au crépuscule pour les observateurs de l’hémisphère Nord.
Maintenant, tout vient d’ici. La comète de Halley sera à nouveau récupérée au cours de la prochaine décennie, conduisant à son apparition en 2061. Voyons, d’ici là, je serai…
Les modules Zarya de fabrication russe (à gauche) et les modules Unity de fabrication américaine sont couplés.
Crédit : NASA
HOUSTON – La NASA a considérablement modifié ses plans concernant un véhicule de désorbitation américain (USDV) capable d’effectuer une désorbite contrôlée de la Station spatiale internationale (ISS) à la fin des opérations en équipage. La NASA a publié une demande de proposition (RFP) révisée à la veille du 25…
La NASA cristallise sa stratégie pour la station spatiale Deorbit Il a été publié dans Rapport quotidien sur l’aérospatiale et la défensele résumé du marché de l’Aviation Week Information Network (AWIN) et est inclus dans votre adhésion à l’AWIN.
Pas un membre? Découvrez comment accéder aux informations et aux données de marché dont vous avez besoin pour rester au courant de ce qui se passe dans la communauté de l’aérospatiale et de la défense.
Dr Ersham Hamidi et Dr Farda Janbaz dans le laboratoire laser.
Paysage plus
Crédit : Reinhard Vendler, Université de Bâle
L’utilisation de lasers au lieu de scalpels et de scies présente de nombreux avantages en chirurgie. Cependant, ils ne sont utilisés que dans des cas isolés. Mais cela est peut-être sur le point de changer : les systèmes laser deviennent de plus en plus intelligents et améliorés, explique une équipe de recherche de l’Université de Bâle.
Même en 1957, lorsque Gordon Gould a inventé le terme « laser » (abréviation de « laser »).àLumière uneAmplification par ssimulation Hune tâche R.adiation »), il imaginait déjà les possibilités de son utilisation en médecine. Les chirurgiens pourront pratiquer de minuscules incisions sans toucher le patient.
Mais avant que cela puisse se produire, il y avait et il y a encore de nombreux obstacles à surmonter. Les sources lumineuses à commande manuelle ont été remplacées par des systèmes mécaniques commandés par ordinateur, afin de réduire les blessures causées par une manipulation maladroite. Le passage des faisceaux continus aux lasers pulsés, qui s’allument et s’éteignent rapidement, a réduit la chaleur qu’ils produisent. Les progrès techniques ont permis aux lasers d’entrer dans le monde de l’ophtalmologie au début des années 1990. Depuis lors, cette technologie s’est également étendue à d’autres domaines de la médecine, mais dans relativement peu d’applications, elle a remplacé le scalpel et la scie à os.
Les préoccupations en matière de sécurité constituent l’obstacle le plus important : comment pouvons-nous prévenir les blessures aux tissus environnants ? Dans quelle mesure la profondeur de coupe peut-elle être contrôlée afin que les couches de tissus plus profondes ne soient pas accidentellement endommagées ?
Des chercheurs de l’Université de Bâle viennent d’apporter une contribution importante à l’utilisation sûre et précise des lasers avec leur récente publication dans la revue spécialisée Les lasers en chirurgie et en médecine. L’équipe de recherche, dirigée par le Dr Ferda Kanbaz du Département de génie biomédical de Bâle et le professeur Azhar Zam, anciennement de l’Université de Bâle mais désormais basée à l’Université de New York, a développé un système qui combine trois fonctions: il coupe les os, contrôle la profondeur de coupe et différencie les tissus.
Trois faisceaux laser dirigés vers un seul endroit
Ces trois fonctions sont assurées par trois faisceaux laser alignés pour se concentrer sur le même endroit. Le premier laser agit comme un capteur tissulaire, balayant les zones autour du site où l’os sera coupé. Grâce à cela, des impulsions laser sont envoyées à la surface à intervalles réguliers, pour ainsi dire, vaporisant à chaque fois une petite partie du tissu. La composition de ce tissu évaporé est mesurée à l’aide d’un spectromètre. Chaque type de tissu possède son spectre individuel – sa propre signature. L’algorithme traite ces données et crée une sorte de carte qui montre où se trouvent les os et où se trouvent les tissus mous.
Le deuxième laser, qui coupe l’os, ne sera activé qu’une fois tout cela terminé, et seulement aux endroits où l’os et non les tissus mous sont visibles sur la carte qui vient d’être créée. Pendant ce temps, le troisième laser – un système optique – mesure la profondeur de coupe et veille à ce que le laser de découpe ne pénètre pas plus profondément que prévu. Pendant la phase de coupe, le capteur de tissu surveille également en permanence si le bon tissu est coupé ou non.
Maîtrise de soi
«La particularité de notre système est qu’il se contrôle tout seul, sans intervention humaine», résume Ferdia Kanbaz, physicienne des lasers.
Jusqu’à présent, les chercheurs testent leur système sur des os de fémur et des tissus de porc obtenus auprès d’un boucher local. Ils ont pu prouver que leur système fonctionne avec une précision de l’ordre du millimètre. La vitesse du laser intégré est également proche de celle d’une intervention chirurgicale traditionnelle.
L’équipe de recherche travaille actuellement à réduire la taille du système. Ils ont déjà atteint la taille d’une boîte d’allumettes en combinant le système optique et le laser de découpe seuls (voir Message d’origine). Une fois qu’ils auront ajouté le capteur tissulaire et pourront miniaturiser davantage l’ensemble du système, ils devraient pouvoir l’insérer dans la pointe de l’endoscope pour des chirurgies mini-invasives.
Chirurgie moins invasive
« Utiliser davantage les lasers en chirurgie est une ambition louable pour plusieurs raisons », souligne le Dr Arsham Hamidi, auteur principal de l’étude. Il souligne que la découpe sans contact réduit quelque peu le risque d’infection. « Des incisions plus petites et plus précises signifient également que les tissus guérissent plus rapidement et que les cicatrices sont réduites. »
La découpe laser contrôlée permet également d’appliquer de nouvelles formes de découpe, de sorte que, par exemple, un implant orthopédique puisse s’emboîter physiquement dans l’os existant. «Un jour, nous pourrons peut-être nous passer complètement du ciment osseux», ajoute Ferda Kanbaz.
Il existe également d’autres domaines de la chirurgie où ce type de préparation combinée est utile : elle peut permettre de distinguer plus précisément les tumeurs des tissus sains environnants, puis de les découper sans retirer une quantité inutile de tissus adjacents. Une chose est sûre : la vision de Gordon Gould du laser en tant qu’outil médical polyvalent se rapproche plus que jamais.
revue
Les lasers en chirurgie et en médecine
Clause de non-responsabilité: AAAS et EurekAlert! Nous ne sommes pas responsables de l’exactitude des newsletters publiées sur EurekAlert ! Par l’intermédiaire d’institutions contributrices ou pour utiliser toute information via le système EurekAlert.