Connect with us

science

La NASA a retardé le lancement de Psyché. Voici la raison de ce gros problème

Published

on

La NASA a retardé le lancement de Psyché.  Voici la raison de ce gros problème

La NASA et l’équipe Psyche ont refusé les demandes d’interview jusqu’à ce qu’un examen indépendant des retards de mission soit terminé. Lors de la conférence de presse du mois dernier, Laurie Glaese, chef de la division des sciences planétaires de la NASA, a déclaré que les responsables de l’agence prendraient une décision sur les prochaines étapes sur la base de cet examen dans les mois à venir. Mais WIRED a discuté avec d’autres experts des options pour envoyer une sonde profondément dans le système solaire, même si elle ne peut pas passer par Mars.

Parker, par exemple, pense qu’il pourrait être possible pour Psyche d’atteindre son astéroïde en s’appuyant davantage sur le système de propulsion électrique solaire du vaisseau spatial. Ce système contient des panneaux solaires qui se déploieront de la taille d’un court de tennis, convertissant la lumière du soleil en électricité pour alimenter les moteurs de Psyche’s Hall, des dispositifs efficaces et durables qui émettent une lueur bleue.

L’utilisation du Falcon Heavy pour le lancement est un autre avantage, dit Parker, car cela donnera au vaisseau spatial plus d’énergie cinétique pour commencer par rapport aux fusées plus petites, ce qui signifie que moins d’énergie solaire doit intervenir. Il pense que se concentrer sur la puissance au décollage et sur le système de propulsion embarqué donnerait aux planificateurs de mission une certaine flexibilité quant aux heures de lancement, leur permettant potentiellement d’effectuer le vol sans dépendre de l’alignement sur Mars.

Une autre option pour un vaisseau spatial qui doit accélérer est de dépasser la Terre. C’était l’option choisie pour le vaisseau spatial Rosetta de l’Agence spatiale européenne, qui a été lancé en 2004 dans le cadre d’une mission liée aux comètes, explique Andrea Acomazzo, chef du système solaire et des missions d’exploration de l’agence. Au cours du voyage de 10 ans de la sonde, elle a pris de la vitesse à travers trois vols terrestres, puis a basculé vers Mars avant de prendre une ligne directe vers la comète Churyumov-Gerasimenko et d’y déployer une sonde Philae.

READ  Découvrez l'univers à moindre coût : le télescope Celestron 114AZ est désormais à moitié prix

L’équipe de Rosetta a dû faire face à deux défis supplémentaires : la comète avait une orbite elliptique en mouvement plutôt qu’une orbite circulaire comme la plupart des astéroïdes, ce qui rendait sa vitesse et sa vélocité difficiles à égaler. Et les chercheurs ont voulu planifier le voyage pour que Rosetta et son compagnon d’atterrissage rencontrent la comète quand elle n’est pas trop proche du soleil, là où elle est la plus active, arrachant des morceaux de glace et de poussière et compliquant la descente qui aurait déjà été difficile enlever.

Les ingénieurs conçoivent un vaisseau spatial avec des options de lancement et de trajectoire à l’esprit, et dans ce cas, certains vols autour de la Terre étaient la meilleure solution. « Vous commencez par le but, puis vous travaillez en arrière », explique Akumazu. « Vous avez trois sources d’énergie : l’énergie primaire de la fusée, l’énergie des réservoirs de carburant de l’engin spatial et l’énergie que vous pouvez obtenir du balancement planétaire. C’est une sorte de travail manuel effectué par mes collègues qui ont essayé pour trouver la solution optimale.

Parker souligne que l’utilité d’un swing planétaire dépend de la géométrie de la trajectoire du vaisseau spatial, donc ce n’est pas toujours une option. Mais il convient qu’ils peuvent être utiles, surtout lorsque la destination est éloignée. « Les missions d’astéroïdes dans la ceinture principale sont difficiles et consomment beaucoup de carburant », dit-il. « Psyche aurait pu être lancé directement vers sa cible avec un lanceur plus gros, un vaisseau spatial plus petit ou un moteur différent », mais cela pourrait augmenter les coûts ou réduire l’exploration scientifique qui peut être accomplie une fois le vaisseau spatial arrivé. La NASA avait prévu que la sonde orbite autour de l’astéroïde pendant au moins 21 mois pendant qu’il était photographié et utilisait un magnétomètre pour rechercher les restes d’un champ magnétique, ce qui pourrait indiquer qu’il s’agissait à l’origine du noyau d’une planète.

READ  Les scientifiques rendent hommage à l'héritage scientifique de l'atterrisseur Mars Insight de la NASA
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

« Danse cosmique du feu et de la glace » : l’ESA partage des images époustouflantes du « mystérieux » système stellaire

Published

on

« Danse cosmique du feu et de la glace » : l’ESA partage des images époustouflantes du « mystérieux » système stellaire

L’Agence spatiale européenne a laissé les internautes impressionnés après avoir partagé vendredi un aperçu du « mystérieux » système stellaire Mira HM Sge. L’étoile symbiotique est située à 3 400 années-lumière dans la constellation du Sagittaire et se compose d’une géante rouge et de sa compagne naine blanche. L’Agence spatiale européenne l’a qualifié de « danse cosmique du feu et de la glace », alors que l’étoile devenait de plus en plus chaude et plus sombre.

« La matière saigne de la géante rouge et tombe sur la naine, la rendant extrêmement brillante. Ce système a éclaté pour la première fois sous forme de nova en 1975. La brume rouge témoigne des vents stellaires. Son profil sur le site Web de la NASA indique que la nébuleuse est d’environ un quart de celle-ci. une année optique.

Le pont gazeux reliant actuellement l’étoile géante à la naine blanche devrait s’étendre sur environ 3,2 milliards de kilomètres.

Selon l’Agence spatiale européenne, ces étoiles mystérieuses ont surpris les astronomes avec une « explosion semblable à une nova » en 1975, augmentant leur luminosité d’environ 250 fois. Cependant, contrairement à la plupart des novae, elle ne s’est pas éteinte au cours des décennies suivantes. Des observations récentes suggèrent que le système est devenu plus chaud, mais qu’il s’est paradoxalement légèrement atténué.

« Grâce à Hubble et au télescope SOFIA, à la retraite, nous avons résolu l’énigme ensemble. Les données ultraviolettes de Hubble révèlent des températures torrides autour de la naine blanche, tandis que SOFIA a détecté de l’eau s’écoulant à des vitesses incroyables, suggérant… « Il y a un disque de matière en rotation. « .

READ  Le fossile de Tiktaalik révèle une étape clé dans l'évolution de la marche

Les données UV de Hubble indiquent que la température estimée de la naine blanche et du disque d’accrétion est passée de moins de 220 000 degrés Celsius en 1989 à plus de 250 000 degrés Celsius.

L’équipe de la NASA a également utilisé le télescope volant SOFIA, aujourd’hui retiré, pour détecter l’eau, les gaz et la poussière circulant dans et autour du système. Les données spectroscopiques infrarouges montrent que l’étoile géante, qui produit de grandes quantités de poussière, a retrouvé son comportement normal deux ans seulement après l’explosion, mais qu’elle est devenue plus faible ces dernières années. SOFIA a aidé les astronomes à voir l’eau se déplacer à environ 28 kilomètres par seconde, ce qui, selon eux, est la vitesse du disque d’accrétion sifflant autour de la naine blanche.

(Avec la contribution des agences)

3,6 millions d’Indiens nous ont rendu visite en une seule journée et nous ont choisis comme plate-forme incontestée de l’Inde pour les résultats des élections générales. Découvrez les dernières mises à jour ici!

Continue Reading

science

Trois lancements de missiles spéciaux à surveiller

Published

on

Trois lancements de missiles spéciaux à surveiller

Avez-vous vu le lancement du Starship de SpaceX plus tôt ce mois-ci ? Si cela a aiguisé votre appétit pour des lancements de fusées plus avancés, alors vous avez de la chance car cet été verra trois autres lancements de grande envergure.

Attendez-vous à une rare sortie de la fusée Falcon Heavy de SpaceX, au lancement de la première nouvelle fusée et à une tentative d’envoyer des astronautes plus loin dans l’espace que jamais depuis les missions Apollo de la NASA au début des années 1970.

Voici tout ce que vous devez savoir – et les dates de votre agenda.

Mardi 25 juin : Rare lancement et atterrissage tandem

Mission : SpaceX Falcon Heavy lance le satellite GOES-U de la NOAA.

Où regarder : SpaceX site Web ou Chaîne Youtube.

La dixième fusée SpaceX Falcon Heavy sera lancée aujourd’hui depuis le Kennedy Space Center en Floride, mettant en orbite un satellite météorologique NASA/NOAA GOES-U. GOES-U est unique en ce sens qu’il dispose d’un coronographe qui image mystérieusement l’atmosphère extérieure la plus chaude du Soleil, aidant ainsi les physiciens solaires à prédire avec plus de précision la météo spatiale.

Falcon Heavy est un lanceur lourd partiellement réutilisable, et le point culminant sera de voir ses deux propulseurs atterrir côte à côte sur deux plateformes côte à côte.

La NASA et SpaceX visent une fenêtre de lancement de deux heures qui s’ouvrira à 17 h 16 HNE le mardi 25 juin, mais gardez un œil sur SpaceX se nourrit de X Pour un timing précis.

Mardi 9 juillet : Une nouvelle fusée puissante décolle pour la première fois dans le ciel

Mission : Lancer pour la première fois la nouvelle fusée géante en Europe.

Où regarder : Agence spatiale européenne site Web ou Chaîne Youtube.

L’Agence spatiale européenne a confirmé le premier lancement de la sonde Ariane 6 depuis le port spatial européen en Guyane française.

Le nouveau lanceur lourd européen remplace Ariane 5 et dispose d’un étage supérieur rallumable, qui lui permettra de lancer plusieurs missions sur différentes orbites en un seul vol.

Vendredi 12 juillet : Polaris Dawn atteint 870 milles au-dessus de la Terre

Mission : SpaceX Falcon 9 lancera un équipage commercial de quatre astronautes privés dans l’espace à bord d’une capsule Dragon.

Où regarder : SpaceX site Web ou Chaîne Youtube.

Le programme Polaris est un partenariat avec SpaceX qui verra jusqu’à trois missions de vols spatiaux habités pour démontrer de nouvelles technologies. Elle est dirigée par Jared Isaacman, fondateur de Shift4 Payments, parti dans l’espace en tant que commandant de la mission SpaceX Inspiration4 en septembre 2021.

Cette première mission, « Polaris Dawn », verra le vaisseau spatial Dragon avec quatre astronautes (Isaacman, Scott Poteet, Sarah Gillies et Anna Menon) voler à 870 milles au-dessus de la Terre, le niveau le plus élevé depuis les missions Apollo sur la Lune.

Suis-moi Twitter/X Et Instagram.

Récupère mes livres Observation des étoiles en 2024, Programme d’observation des étoiles pour débutants Et Quand aura lieu la prochaine éclipse ?

Je vous souhaite un ciel clair et des yeux écarquillés.

READ  Des cristaux en temps réel se trouvent à l'intérieur de l'ensemble de jouets TwistedSifter
Continue Reading

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  La communauté du rugby se mobilise pour le talentueux joueur après un diagnostic « dévastateur ».

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

Trending

Copyright © 2023