Connect with us

science

Le tapis roulant permet aux jeunes nageurs de regarder de plus près le comportement

Published

on

Le tapis roulant permet aux jeunes nageurs de regarder de plus près le comportement

PAR LIGNE : Eric Batterman

Newswise – Une équipe de la McKelvey School of Engineering de l’Université de Washington à St. Louis et du MIT a créé une méthode microfluidique qui offre de nouvelles opportunités d’expériences sur les cellules nageuses et les micro-organismes.

« Les cellules que nos collaborateurs étudient sont de bons nageurs pour leur taille, donc les forces nécessaires pour les maintenir sont importantes », a-t-il déclaré. J Mark Meacham, professeur agrégé de génie mécanique et de science des matériaux à la McKelvey School of Engineering et auteur principal de l’article, publié le 16 juin dans les Actes de la National Academy of Sciences. « Dans nos appareils, les ultrasons comme ceux utilisés pour l’imagerie sont capables de maintenir le corps cellulaire en place sans affecter la façon dont il nage. »

Les cellules utilisées dans la recherche étaient des algues unicellulaires Chlamydomonas reinhardtiun organisme modèle utilisé pour étudier le mouvement des cils, qui sont de petites structures ressemblant à des cheveux qui déplacent les fluides et propulsent les cellules.

La nouvelle approche a été motivée par des travaux antérieurs dans les laboratoires Philippe Bailey L’éminent professeur Lee Hunter et président du Département de génie mécanique et des sciences des matériaux, qui étudie le mouvement des cils, W Susan Hollander, professeur de génétique à la faculté de médecine de l’Université de Washington et expert de la structure et de la fonction des cils, tous deux co-auteurs de l’article. Meacham a développé la méthode et l’appareil avec le premier auteur Minjiang Cuien génie mécanique de McKelvey Engineering en 2017 et 2021, respectivement, et est maintenant chercheur postdoctoral au MIT.

READ  La mission Hera de l'ESA transporte deux cubesats. Ils atterriront sur Dimorphos

C. reinhardtii Les cellules sont microscopiques – leurs cils sont plus petits – mais elles nagent environ 10 longueurs de corps par seconde. Leurs cils battent également environ 60 à 70 fois par seconde.

« Le champ de vision à la résolution nécessaire pour voir le mouvement des cils est dû au fait que les cellules s’éloignent très rapidement de l’endroit où elles regardent », a déclaré Meacham. « Il est difficile d’étudier leur comportement de nage sans piéger les cellules d’une manière ou d’une autre. »

Cui a contourné le problème du piégeage en utilisant une combinaison de deux types d’ondes sonores. Une onde acoustique de surface génère des vibrations qui se propagent le long de la surface du matériau, et une grande onde acoustique est générée par des vibrations de surface dans le fluide où se trouvent les cellules.

« Les cellules sont retenues par les ondes sonores dans le fluide dans ce qu’on appelle des nodules ou des zones de basse pression », a déclaré Meacham. « Nous voulions utiliser des ondes acoustiques de surface car elles permettent des fréquences plus élevées qui donnent des pièges plus petits avec moins de distance entre eux, et cela donne un meilleur contrôle sur les cellules qui essaient de manipuler. »

Malheureusement, les dispositifs à ondes acoustiques de surface conventionnels ne sont pas aussi efficaces que leurs homologues à ondes acoustiques volumineuses, et une efficacité est nécessaire pour générer une force de piégeage suffisante sur ces cellules pour les maintenir sans surchauffer le dispositif.

« Toute incompétence conduit à une surchauffe, et cela tue les cellules », a déclaré Mecham. « Mingyang a créé une structure d’appareil où un petit canal de verre est utilisé, qui peut convertir les ondes acoustiques de surface en ondes sonores collectées pour améliorer l’efficacité. L’utilisation du verre nous permet également d’utiliser la microscopie à immersion dans l’huile à haute résolution. »

READ  La première mission sud-coréenne sur la Lune démarre jeudi - Arc parabolique

« Une fois ces défis pratiques résolus, nous pouvons nous concentrer sur les autres avantages du piégeage acoustique des fluides », a déclaré Meacham. « Le principal besoin de nos collaborateurs était de piéger ces cellules sans restreindre leur renouvellement. Le piège acoustique permet cela car il n’entre pas directement en contact avec les cellules. »

Auparavant, pour étudier cette nage C. reinhardtii cellules, les chercheurs ont utilisé une pipette d’aspiration pour maintenir la cellule en place lors de l’imagerie des cils. Cependant, cela ne permet pas au corps cellulaire de bouger même légèrement en réponse au battement des cils, limitant notamment la rotation de la cellule, qui est le mouvement naturel lorsqu’elle nage.

« Pensez-y comme un tapis roulant pour ces petits nageurs, et le champ acoustique fournit un moyen de maintenir la cellule en place sans affecter le mouvement des cils ou la nage dans un espace tridimensionnel », a déclaré Meacham.

L’appareil présente également des avantages supplémentaires pour les travaux expérimentaux avec des nageurs de précision.

« Nous pouvons créer 25 à 30 pièges à la fois et effectuer toutes les analyses des cellules piégées en parallèle », a déclaré Meacham. « Vous ne pouvez pas faire cela avec une micropipette – ce n’est tout simplement pas physiquement possible. De cette façon, vous pouvez rapidement effectuer des mesures sur un plus grand nombre de cellules. »

Bailey s’est dit enthousiasmé par les implications de ce travail pour comprendre le mouvement cellulaire.

« Les résultats de Mingyang indiquent que la méthode n’affecte en rien la nage, mais le gros impact peut être dans la flexibilité de l’approche pour piéger les cellules nageuses ou les micro-organismes de cette taille », a déclaré Bailey. « Vous pouvez maintenant exécuter un certain nombre de nouvelles expériences pour répondre à des questions biologiques sans réponse en utilisant le piégeage acoustique pour fournir un environnement contrôlé pour que cette expérience ait lieu. »

READ  La planète Terre enregistre le jour le plus court depuis que les scientifiques ont révélé que la planète tournait plus vite

***

Cowie M, Dutch SK, Bailey PV, Meacham JM. Le piégeage acoustique fort et la turbulence dans les micronages unicellulaires illuminent la nage 3D et la coordination ciliaire. Actes de l’Académie nationale des sciences (PNAS) 16 juin 2023. DOI : https://doi.org/10.1073/pnas.2218951120.

Cette recherche a été soutenue par la National Science Foundation (CMMI-1633971 et CBET-1944063).

Publié à l’origine par la McKelvey School of Engineering.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Un événement unique visible à l’œil nu : ScienceAlert

Published

on

Un événement unique visible à l’œil nu : ScienceAlert

Au cours des prochains mois, un spectacle pourrait illuminer le ciel du nord.

Là, dans la constellation de la Couronne Boréale, en A Une distance de plus de 2500 années-lumièreune étoile appelée T Coronae Borealis se cache, déclenchant une explosion qui fera temporairement de l’étoile l’un des objets les plus brillants du ciel nocturne.

Les astronomes attendent avec impatience que cette chose explose, non seulement parce qu’elle sera spectaculaire, mais aussi en raison de la richesse des données que nous pourrons collecter sur un type d’explosion stellaire appelé « explosion d’étoiles ». Classique Nova.

La raison pour laquelle nous savons que T Coronae Borealis (T CrB en abrégé) va exploser est que cela se produit une fois tous les 80 ans, pendant au moins huit siècles.

Cela signifie qu’il est très proche d’un événement unique et que la technologie dont nous disposons désormais pour le détecter dépasse largement celle dont nous disposions lors de son dernier vol, en février 1946.

« Il existe quelques novae récurrentes avec des cycles très courts, mais en général, nous ne voyons pas d’explosion répétée au cours d’une vie humaine, et elle est rarement relativement proche de notre système. » dit l’astronome Rebecca Hounsell Du Goddard Space Flight Center de la NASA.

« C’est très excitant d’avoir ce siège au premier rang. »

À ne pas confondre avec la quasi-effacement des étoiles lors d’explosions cataclysmiques appelées supernovae, les novae classiques sont des explosions plus petites qui laissent l’étoile plus ou moins intacte. En fait, ce n’est pas la première fois que cet être cosmique vit cette expérience.

READ  La première mission sud-coréenne sur la Lune démarre jeudi - Arc parabolique

La raison pour laquelle T CrB explose si fréquemment et dans les délais prévus est une bizarrerie du type d’étoile dont il s’agit. Il s’agit d’un système stellaire binaire contenant les restes du noyau effondré d’une étoile semblable au Soleil appelée naine blanche, et une géante rouge gonflée.

border-frame= »0″ allow= »accéléromètre ; lecture automatique ; écriture dans le presse-papiers ; support crypté ; gyroscope ; image dans l’image ; partage sur le Web » Referrerpolicy= »strict-origin-when-cross-origin »allowfullscreen>

Les naines blanches sont très petites et très denses, dont la taille varie entre la taille de la Terre et celle de la Lune, et leur masse de cette taille équivaut à la masse de 1,4 soleils. Cela signifie qu’il est très attractif ; S’ils ont un compagnon binaire sur une orbite suffisamment proche, ils ont tendance à attirer de la matière, principalement de l’hydrogène.

Au fil du temps, cet hydrogène s’accumule à la surface de la naine blanche, pressé par la force de gravité. Finalement, la pression et la chaleur sur la couche sous-jacente d’hydrogène deviennent si intenses que tout s’enflamme dans une explosion thermonucléaire incontrôlable qui expulse violemment l’excès d’hydrogène dans l’espace de manière spectaculaire.

C’est Nova. Pour T CrB, la période nécessaire est d’environ 80 ans.

Au cours de la dernière décennie, les astronomes ont Notez le système binaire Présenter un comportement similaire à celui que vous aviez avant l’explosion de 1946 ; en particulier, Diminution de la luminosité Ce qui annonce l’éruption prochaine. Leur analyse suggère que cela pourrait arriver très prochainement, dès septembre 2024.

Cela signifie que les astronomes surveillent de près une petite partie du ciel remplie de constellations d’étoiles – Lyra, Hercule et Botes – et un petit arc d’étoiles pris en sandwich entre elles. C’est la Couronne Boréale.

READ  Un astrophysicien aide à cartographier les origines de l'univers
Où peut-on trouver la Corona Borealis dans le ciel ? Attention à la « nouvelle » star ! (NASA)

Nous espérons entendre parler de la nova dès qu’elle se produira. Il fleurira dans le ciel, devenant visible à l’œil nu, puis disparaîtra progressivement au cours d’une semaine. Vous devriez donc avoir le temps de sortir et de le regarder, s’il attire votre attention.

En fait, si vous le pouviez, ce serait génial. Des scientifiques citoyens sont également appelés à collecter des données. Plus nous avons d’yeux sur T CrB, mieux nous pouvons comprendre ses éclats flashy.

Et bien sûr, il y aura autant de télescopes que possible qui pourront être réglés, depuis les ondes radio les plus longues jusqu’aux rayonnements X et gamma les plus puissants.

« Les novae répétées sont imprévisibles et paradoxales. » dit l’astrophysicien Koji Mukai Goddard de la NASA. « Quand vous pensez qu’il n’y a aucune raison pour qu’ils suivent un certain modèle, ils le font – et dès que vous commencez à compter sur eux pour répéter le même modèle, ils s’en écartent complètement. Nous verrons comment se comporte T CrB. « 

Continue Reading

science

Moment incroyable : un mystérieux calmar des grands fonds a été aperçu en train de bercer des œufs géants, tandis que les experts découvrent des preuves de l’existence d’une nouvelle espèce.

Published

on

Moment incroyable : un mystérieux calmar des grands fonds a été aperçu en train de bercer des œufs géants, tandis que les experts découvrent des preuves de l’existence d’une nouvelle espèce.

C’est le moment incroyable où un calmar des grands fonds inconnu a été repéré portant des œufs translucides, incitant les experts à découvrir des preuves de l’existence d’une nouvelle espèce.

Cet étonnant calmar des grands fonds a d’abord fasciné les chercheurs lorsqu’il a été enregistré en train d’incuber des œufs géants en 2015, quelque chose qu’ils n’avaient jamais vu auparavant.

Un calmar des grands fonds inconnu a été aperçu portant des œufs transparentsCrédit : Mbari
Un étonnant calmar des grands fonds a amené les experts à découvrir des preuves de l’existence d’une nouvelle espèceCrédit : Mbari
Des images étonnantes ont été capturées dans le golfe de Californie d’un calmar non identifié en action.Crédit : Mbari

Ces images époustouflantes ont été capturées dans le golfe de Californie, où l’on pensait initialement que le calmar faisait partie de la famille des Gonatidae.

Près d’une décennie plus tard, les chercheurs pensent qu’il s’agit d’une espèce inconnue qui a été découverte grâce à une combinaison d’indices contenus dans les images.

Les calmars des grands fonds sont essentiels aux réseaux trophiques océaniques. Ce sont de grands prédateurs qui dévorent les poissons et les invertébrés, comme les vers, dans les eaux intermédiaires.

À leur tour, ils sont mangés par ceux qui sont beaucoup plus gros qu’eux, comme les gros poissons, les requins, les baleines, les dauphins, les phoques et les oiseaux marins.

Malgré leur importance écologique et économique incroyablement importante, ces créatures à dix membres restent un mystère pour les chercheurs, en particulier les espèces peu connues capturées dans les images.

Des indices fascinants

Les experts pensaient initialement que ces œufs de 1,5 pouce de large n’étaient pas des calmars des grands fonds typiques.

READ  Andrew B Goldberg - Le Lancet

Les soupçons ont été confirmés car d’anciennes observations du calmar Gonatus faisaient état d’œufs deux fois plus petits que ceux des images, mesurant seulement 0,25 pouce de large.

Le manque d’œufs – estimé à moins de 40 œufs – a également dérouté les chercheurs.

En comparaison, le calmar gonatus commun en contient beaucoup plus, certains incubant dans le passé jusqu’à 3 000 œufs à la fois.

Les seiches sont rarement vues vivantes dans un environnement aussi froid et sombre.

La simple profondeur à laquelle le calmar a été capturé donne de fortes indications sur le fait qu’il ne s’agissait pas d’une espèce connue.

Voir des calmars des grands fonds protéger leurs œufs après la ponte est un spectacle extrêmement rare, disent les experts, car le processus peut entraîner la mort maternelle des œufs à couver.

« Notre rencontre inattendue avec le calmar géant en train d’incuber ses œufs a attiré l’attention de tout le monde dans la salle de contrôle du navire », a déclaré Stephen Haddock, scientifique principal et chef d’expédition au Monterey Bay Aquarium Research Institute.

« Cette découverte remarquable souligne la diversité des façons dont les animaux s’adaptent aux défis uniques de la vie en profondeur. »

Le mystère des profondeurs marines : comment seule une petite partie des créatures des profondeurs marines aurait été découverte

Les océans et l’eau représentent environ 71 pour cent de la surface de la Terre et sont pratiquement épargnés par l’activité humaine.

Cela a laissé des millions de vie marine inexplorées.

Les scientifiques s’attendent à ce que jusqu’à deux millions d’espèces différentes nagent dans l’océan, et seulement 250 000 ont été découvertes jusqu’à présent, selon le Registre mondial des espèces marines.

READ  La mission Hera de l'ESA transporte deux cubesats. Ils atterriront sur Dimorphos

Certaines des créatures les plus étranges jamais découvertes comprennent des « écureuils gommeux » de concombre de mer gélatineux, des vers polychètes colorés, des fantaisies roses translucides, des vers d’arbre de Noël et même une multitude de dragons de mer en papier.

Une partie de l’énorme problème vient de la capacité limitée de l’équipe de recherche à explorer les fonds marins en raison de leur profondeur dans certaines parties du monde.

Le manque de visibilité à distance et les températures glaciales signifiaient que la technologie devait rattraper son retard avant de pouvoir explorer pleinement l’océan.

Continue Reading

science

Une méthode de contrôle réversible des forces de Casimir à l’aide de champs magnétiques externes

Published

on

Une méthode de contrôle réversible des forces de Casimir à l’aide de champs magnétiques externes

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Adaptation du champ magnétique à la force de Casimir induite par les fluctuations quantiques. Crédit : Zhang et al.

× Fermer


Adaptation du champ magnétique à la force de Casimir induite par les fluctuations quantiques. Crédit : Zhang et al.

La force dite Casimir ou effet Casimir est un phénomène de mécanique quantique résultant de fluctuations du champ électromagnétique entre deux surfaces conductrices ou isolantes séparées par une courte distance. Des études ont montré que cette force peut être attractive ou répulsive, selon les propriétés diélectriques et magnétiques des matériaux utilisés dans les expériences.

Des chercheurs de l’Université des sciences et technologies de Chine ont récemment exploré la possibilité d’ajuster sélectivement la force de Casimir, c’est-à-dire de la convertir de l’attraction en répulsion et vice versa, en utilisant des champs magnétiques externes. leurs études, En vedette dans Physique naturelleDémontre un réglage réussi du champ magnétique sur la force de Casimir résultant d’une sphère d’or et d’une plaque de silice immergée dans des ferrofluides à base d’eau.

« Mon domaine de recherche est la physique de la matière condensée, mais j’ai également un fort intérêt pour la physique fondamentale, telle que les fluctuations quantiques et leurs effets induits », a déclaré Zhangjan Zeng, auteur correspondant de l’article, à Phys.org.

« Au cours des deux dernières décennies, j’ai suivi de près l’évolution dans le domaine des forces Casimir et j’ai été particulièrement impressionné. Un article de Munday et al. dans nature. Les forces de Casimir sont généralement attractives, ce qui pose des défis pour les applications, par exemple dans les systèmes microélectromécaniques (MEMS). « Dans leur article, les auteurs créent une expérience remarquable pour obtenir des forces répulsives de Casimir en choisissant soigneusement la permittivité diélectrique des matériaux en question. »

Inspiré par cet article publié en 2009, Zeng a entrepris de poursuivre ses recherches visant à contrôler de manière réversible les forces de Casimir en appliquant des champs magnétiques. Son espoir était de concevoir une approche fiable pour modifier l’effet Casimir, ce qui pourrait ouvrir de nouveaux horizons à la fois pour la recherche et le développement technologique.

« Au départ, nous pensions contrôler la force de Casimir en appliquant un champ électrique, inspiré du concept des dispositifs FET », a expliqué Zeng. « Bien que l’on sache que la force de Casimir dépend de la permittivité diélectrique des matériaux impliqués, cette permittivité n’est généralement pas sensible aux champs extérieurs. En revanche, selon la théorie de Lifshitz, la force de Casimir dépend également de la perméabilité magnétique du matériaux impliqués. »

La perméabilité magnétique de nombreux matériaux magnétiques, notamment les ferrofluides, peut être modifiée par application de champs magnétiques externes. Zeng et ses étudiants ont donc décidé d’utiliser des ferrofluides à base d’eau pour permettre le réglage de la force de Casimir entre une sphère d’or et une plaque de silice.

« J’ai proposé ce projet à des étudiants diplômés, mais aucun d’entre eux n’était prêt à le faire », a déclaré Zeng. « En fin de compte, j’ai réussi à convaincre des étudiants talentueux de réaliser le projet, et nous avons réussi. »

Zeng et ses étudiants ont d’abord effectué une série de calculs théoriques. Ces calculs indiquent que la force de Casimir pourrait être convertie d’attraction en répulsion simplement en ajustant le champ magnétique externe, la distance entre les deux échantillons de matière et le volume de ferrofluide qu’ils ont utilisé.

Les chercheurs ont ensuite mené une expérience destinée à tester leurs prédictions. À l’aide d’un cantilever capable de collecter des mesures à l’intérieur des ferrofluides, ils ont observé comment les changements mis en œuvre affectaient l’effet Casimir.

Les résultats de cette étude récente pourraient bientôt ouvrir la voie à de nouveaux efforts visant à régler efficacement l’effet Casimir à l’aide de champs externes. Collectivement, ces travaux pourraient permettre le développement de nouveaux dispositifs micromécaniques transformables tirant parti des forces de Casimir.

« Nous avons obtenu un accordage réversible de la force Casimir de l’attraction à la répulsion à l’aide d’un champ magnétique, ouvrant la voie au développement de dispositifs micromécaniques commutables basés sur l’effet Casimir accordable », a ajouté Zeng. « Dans nos prochaines études, nous prévoyons de contrôler la force de Casimir en utilisant la lumière. Par exemple, les plasmons présents dans des tôles peuvent être excités par la lumière, ce qui devrait effectivement modifier la force de Casimir. »

Plus d’information:
Yichi Zhang et al., Adaptation du champ magnétique à la force de Casimir, Physique naturelle (2024). est ce que je: 10.1038/s41567-024-02521-0

Informations sur les magazines :
nature


physique naturelle


READ  L'épaisseur de la croûte de glace révèle la température de l'eau sur les mondes océaniques
Continue Reading

Trending

Copyright © 2023