Connect with us

science

Les physiciens sont ravis par la nouvelle mesure de W Boson.

Published

on

Les physiciens sont ravis par la nouvelle mesure de W Boson.

Travailleurs du collisionneur de particules du Laboratoire Fermi.

Une équipe de centaines de scientifiques a mesuré avec précision la masse du boson W, une particule élémentaire responsable de la force nucléaire faible. Les chercheurs ont découvert, à leur grande surprise, que Le boson est plus massif que prévu Forme standard En physique des particules, la théorie de travail qui décrit de nombreuses forces fondamentales de l’univers.

La nouvelle valeur a été extraite de 10 ans d’expériences et de calculs par 400 chercheurs dans 54 institutions différentes à travers le monde, un effort incroyable. Toutes les données ont été recueillies à partir d’expériences sur quatre étages, 4500-tonnes détecteur de collision (CDF-II en abrégé) à l’accélérateur Tevatron du Fermilab près de Chicago, Illinois.

La collaboration CDF fonde le groupe W. La masse du boson est de 80 433 +/- 9 MeV/c^2, qui est un nombre Presque le double de la précision de sa mesure précédente collectif. Pour avoir une idée de l’échelle, la nouvelle mesure place le boson W à environ 80 fois la masse du proton. Résultats par équipe publié Aujourd’hui en sciences.

« La vérité est que ce qui s’est passé ici est le nombre de fois que des choses se produisent en science. Nous avons regardé le nombre, David Tobak, physique à la Texas A & M University et porte-parole de CDF Collaboration, a déclaré lors d’un appel vidéo. « On pouvait voir qu’elle ne faisait que laver les gens. C’était calme. Nous ne savions pas quoi en faire. »

« Nous avons été très agréablement surpris [with the result]A écrit Ashutosh Kotwal, physicien à l’Université Duke et membre de la collaboration CDF, dans un e-mail. « Nous étions tellement concentrés sur la précision et la robustesse de notre analyse que la valeur elle-même a été un merveilleux choc. »

Le boson W est lié à nucléaire faibleune réaction primaire responsable d’un type de désintégration radioactive et de fusion nucléaire qui se produit dans les étoiles. Ne vous inquiétez pas – le boson a une masse très différente de celle attendue ne signifie pas que nous avons mal compris des choses comme la fusion nucléaire – mais cela signifie qu’il y a encore beaucoup de choses que nous ne comprenons pas sur les particules qui composent l’univers et comment ils interagissent.

Un graphique montrant le résultat exact de la dernière expérience.

« Le modèle standard est le meilleur que nous ayons pour la physique des particules. C’est incroyablement bon. Le problème est que nous savons que nous nous trompons », a déclaré Tupac. Faire le modèle standard correctement, ce qui pourrait nous donner une idée de ce qui est le plus correct ?« 

Le modèle standard prédit une valeur pour la masse d’un boson W, une valeur que l’équipe a cherché à contester avec une note de 4 Un million de bosons filtres produits par des collisions entre protons et antiprotons au Fermilab. Leur résultat était supérieur aux prédictions du modèle standard Énorme sept écarts-types. Kotwal, qui a posté cinq Des mesures de plus en plus précises de la masse de la particule au cours des 28 dernières années, a-t-elle déclaré, « tLes chances d’augmenter les sept écarts-types sont une chance statistique inférieure à 1 sur un milliard.

Tupac a comparé la mesure à la mesure d’un gorille pesant 800 livres dans une once de son poids réel. Comme pour de nombreuses expériences scientifiques, en particulier en physique des particules, où les masses sont très faibles, les chercheurs ont masqué leurs résultats, pour s’assurer que les calculs n’étaient pas affectés par les attentes ou les espoirs de l’équipe de recherche.

Mais maintenant, avec une mesure très précise qui est très différente de celle d’avant, le minimum Selon des estimations, les physiciens ont la tâche peu enviable de déterminer ce que le modèle standard n’est pas. Ce n’est certainement pas la première fois que la physique subatomique s’avère réellement différente des meilleures suppositions de l’humanité. avril dernierMuon g-2 Collaboration a trouvé des preuves supplémentaires que les propriétés de MYUN (une autre particule subatomique) peut ne pas être en accord avec les prédictions du modèle standard. Et deux des faits les plus importants de l’univers – la gravité et la matière noire – sont Célèbre que le modèle n’a pas expliqué.

Un ouvrier regarde l'énorme détecteur.

Le détecteur de collisionneur du laboratoire Fermi de 4 500 tonnes.
photo: © Corbis / Corbis (Getty Images)

« Afin de découvrir quelle pourrait être la théorie la plus fondamentale, il est important de trouver des phénomènes qui ne peuvent pas être expliqués par [Standard Model] », Par email Claudio Campaniari, physicien à l’Université de Californie-Santa Barbara n’est pas affilié à la dernière étude. En d’autres termes, les phénomènes dans lesquels le [Standard Model] L’approximation s’effondre. » Campagmari Co-écrit par Article Points de vue Sur La nouvelle mesure.

Il existe des essais préparés pour cela; elles vont Étudiez les implications de la découverte d’aujourd’hui à travers diverses expériences de collision. Les résultats d’ATLAS sont imminents et Solénoïde compact à muons (CMS)deux détecteurs du Grand collisionneur de hadrons du CERN (les deux détecteurs responsables de A la découverte du boson de Higgs Depuis 10 ans). et le grande lumière collisionneur de hadrons-ce Développement qui – lequel Le nombre de collisions possibles augmentera d’un facteur 10– Il stimulera également Opportunités Voir de nouvelles particules fascinantes lorsqu’elles seront terminées en 2027.

Les collisions CDF ont eu lieu entre protons et antiprotons, tandis que le grand hadrons collisionneur La collision d’un proton et d’un proton en résulte. Kotwal a dit que si les humains construisaient un collisionneur électron-positon, Il permettra des mesures précises et la recherche de grands processus rares hadrons collisionneur ne peut pas être produit.

Comme l’a dit Martijn Mulders, un physicien du CERN qui a co-écrit l’article Perspectives, Dans un e-mail, les physiciens adopteront une approche à deux volets pour tester le modèle : mesurer des particules connues (telles que le boson W) avec une précision croissante, ainsi que découvrir des particules entièrement nouvelles. nouvelles particules On les trouve souvent en « chassant » la chasse.: passer au crible le bruit de forage subatomique Mush pour voir ce qui a été généré de manière inattendue.

L’accélérateur Tevatron a été fermé en 2011, juste après la fin de la collaboration expérimentale. Le résultat d’aujourd’hui est donc l’au-delà pour l’instrument légendaire et un énorme W pour l’équipe et la physique des particules dans son ensemble.

PLUS : Ces radiographies prêtes à l’emploi sont prêtes à l’emploi

READ  Une soirée d'observation de l'éclipse solaire a été organisée en mai, où le comté devrait offrir la meilleure observation
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le télescope spatial Webb capture des amas d’étoiles dans l’arc du joyau cosmique

Published

on

Le télescope spatial Webb capture des amas d’étoiles dans l’arc du joyau cosmique

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


L’arc du joyau cosmique observé par le télescope spatial James Webb. Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm) et Cosmic Spring Collaboration.

× Fermer


L’arc du joyau cosmique observé par le télescope spatial James Webb. Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm) et Cosmic Spring Collaboration.

Une équipe internationale d’astronomes a utilisé le télescope spatial James Webb NASA/ESA/CSA pour découvrir des amas d’étoiles liés gravitationnellement lorsque l’univers avait 460 millions d’années. Il s’agit de la première découverte d’amas d’étoiles dans une galaxie nouveau-née moins de 500 millions d’années après le Big Bang.

Le travail est publié Dans le magazine nature.

Les jeunes galaxies du début de l’Univers ont connu des phases explosives majeures de formation d’étoiles, générant de grandes quantités de rayonnements ionisants. Cependant, en raison de sa dimension cosmique, les études directes de son contenu stellaire se sont révélées difficiles. Grâce à Webb, une équipe internationale d’astronomes a découvert cinq jeunes amas d’étoiles massifs dans le joyau cosmique Sagittaire (SPT0615-JD1), une galaxie à forte lentille qui émettait de la lumière lorsque l’univers avait environ 460 millions d’années, couvrant 97 % de l’espace. Univers. Temps cosmique.

L’arc du joyau cosmique a été initialement découvert dans les images du télescope spatial Hubble de la NASA/ESA acquises par le programme RELICS (Reionization Lensing Array Survey) de l’amas de galaxies lenticulaires SPT-CL J0615−5746.

« On pense que ces galaxies sont la principale source de rayonnement intense qui a réionisé l’univers primitif », a déclaré l’auteur principal Angela Adamo de l’Université de Stockholm et du Centre Oscar Klein en Suède. « La particularité de Cosmic Jewel Arc est que grâce à la lentille gravitationnelle, nous pouvons réellement cartographier la galaxie à l’échelle du parsec. »


Pan-Gems (groupe de galaxies SPT-CL J0615−5746). Source : ESA/Hubble/Web

Grâce à Webb, l’équipe scientifique peut désormais voir où se forment les étoiles et comment elles sont distribuées, de la même manière que le télescope spatial Hubble est utilisé pour étudier les galaxies locales. Le point de vue de Webb offre une occasion unique d’étudier la formation des étoiles et le fonctionnement interne des galaxies émergeant à une distance aussi sans précédent.

« L’incroyable sensibilité et la résolution angulaire de Webb dans les longueurs d’onde du proche infrarouge, combinées à la lentille gravitationnelle fournie par l’amas massif de galaxies au premier plan, ont permis cette découverte », a expliqué Larry Bradley du Space Telescope Science Institute et chercheur principal du programme d’observation de Webb. qui a capturé ces données ». . « Aucun autre télescope ne peut faire cette découverte. »

« Ce fut une incroyable surprise lorsque nous avons ouvert Web Photos pour la première fois », a ajouté Adamo. « Nous avons vu une petite série de points brillants, reflétés d’un côté à l’autre – ces joyaux cosmiques sont des amas d’étoiles. Sans Webb, nous n’aurions pas su que nous observions des amas d’étoiles dans une si jeune galaxie. »

Dans notre Voie Lactée, nous voyons d’anciens amas d’étoiles sphériques liés par la gravité qui ont survécu pendant des milliards d’années. Ce sont d’anciens vestiges d’une intense formation d’étoiles dans l’univers primitif, mais on ne sait pas bien où et quand ces amas se sont formés. La découverte de jeunes amas massifs d’étoiles dans l’arc du joyau cosmique nous offre une excellente vision des premières étapes du processus qui pourrait aboutir à la formation d’amas globulaires.


Image agrandie d’amas d’étoiles en miroir dans l’Arc des Joyaux Cosmiques. Au milieu : version négative des amas d’étoiles, où différents amas d’étoiles sont mis en évidence. À droite : les étoiles sont regroupées « derrière » la lentille gravitationnelle. Cette image a été calculée à l’aide de simulations informatiques. Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm) et Cosmic Spring Collaboration.

× Fermer


Image agrandie d’amas d’étoiles en miroir dans l’Arc des Joyaux Cosmiques. Au milieu : version négative des amas d’étoiles, où différents amas d’étoiles sont mis en évidence. À droite : les étoiles sont regroupées « derrière » la lentille gravitationnelle. Cette image a été calculée à l’aide de simulations informatiques. Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm) et Cosmic Spring Collaboration.

Les amas récemment découverts dans le Sagittaire sont massifs, denses et situés dans une très petite région de sa galaxie, mais ils contribuent également à la majorité de la lumière ultraviolette provenant de leur galaxie hôte. Les amas sont beaucoup plus denses que les amas d’étoiles proches. Cette découverte aidera les scientifiques à mieux comprendre comment les galaxies naissantes forment leurs étoiles et où se forment les amas globulaires.

L’équipe souligne que cette découverte relie une variété de domaines scientifiques.

« Ces résultats fournissent une preuve directe que des amas globulaires primordiaux se forment dans des galaxies faibles pendant l’époque de réionisation, contribuant ainsi à notre compréhension de la façon dont ces galaxies réussissent à réioniser l’univers », a expliqué Adamo.

« Cette découverte impose également des contraintes importantes sur la formation des amas globulaires et leurs propriétés élémentaires. Par exemple, les densités stellaires élevées trouvées dans les amas nous fournissent la première indication des processus qui se déroulent en leur sein, donnant ainsi de nouvelles informations sur la façon dont cela pourrait être l’affaire. » « La formation d’étoiles très massives et les graines de trous noirs, toutes deux importantes pour l’évolution des galaxies. »

À l’avenir, l’équipe espère constituer un échantillon de galaxies pour lesquelles une résolution similaire pourra être obtenue.


Champ de galaxies sur fond d’espace noir. Au milieu se trouve un groupe de dizaines de galaxies jaunes formant un amas de galaxies au premier plan. Parmi eux se trouvent des éléments linéaires déformés, qui semblent souvent suivre des cercles concentriques invisibles qui s’incurvent autour du centre de l’image. Des éléments linéaires sont créés lorsque la lumière de la galaxie d’arrière-plan est courbée et amplifiée par une lentille gravitationnelle. L’image est parsemée d’une variété de galaxies lumineuses, rouges et bleues de formes différentes, ce qui la fait apparaître densément peuplée.]Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm ) et la Spring Collaboration Universal

× Fermer


Champ de galaxies sur fond d’espace noir. Au milieu se trouve un groupe de dizaines de galaxies jaunes formant un amas de galaxies au premier plan. Parmi eux se trouvent des éléments linéaires déformés, qui semblent souvent suivre des cercles concentriques invisibles qui s’incurvent autour du centre de l’image. Des éléments linéaires sont créés lorsque la lumière de la galaxie d’arrière-plan est courbée et amplifiée par une lentille gravitationnelle. L’image est parsemée d’une variété de galaxies lumineuses, rouges et bleues de formes différentes, ce qui la fait apparaître densément peuplée.]Crédit image : ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Université de Stockholm ) et la Spring Collaboration Universal

« Je suis convaincu qu’il existe d’autres systèmes comme celui-ci qui attendent d’être découverts dans l’univers primitif, ce qui nous permettra de faire progresser notre compréhension des premières galaxies », a déclaré Eros Vanzella de l’Observatoire des sciences astrophysiques et spatiales de l’INAF à Bologne, en Italie. Un contributeur majeur à l’entreprise.

En attendant, l’équipe se prépare à d’autres observations et spectroscopies utilisant Webb.

« Nous prévoyons d’étudier cette galaxie à l’aide des instruments NIRSpec et MIRI de Webb au cours du troisième cycle », a ajouté Bradley. « Les observations NIRSpec nous permettront de confirmer le redshift de la galaxie et d’étudier l’émission ultraviolette des amas d’étoiles, qui serviront à étudier plus en détail leurs propriétés physiques. Les observations MIRI nous permettront d’étudier les propriétés des objets ionisés. Spectroscopique les observations nous permettront également de cartographier spatialement le taux de formation des étoiles. »

Plus d’information:
Angela Adamo et al., Amas d’étoiles siamois observés dans une galaxie lentille 460 millions d’années après le Big Bang, nature (2024). est ce que je: 10.1038/s41586-024-07703-7. www.nature.com/articles/s41586-024-07703-7

Informations sur les magazines :
nature


READ  La manière dont les fourmis coupeuses de feuilles cultivent un jardin fongique pour décomposer les plantes pourrait donner un aperçu des futurs biocarburants.
Continue Reading

science

Les astronomes découvrent trois planètes terrestres géantes potentielles autour d’une étoile proche

Published

on

Les astronomes découvrent trois planètes terrestres géantes potentielles autour d’une étoile proche

Diagrammes S-BGLS de YV2 pour l’étoile HD48948 se concentrant sur trois bandes de fréquences (7,3, 38 et 151 d). La valeur absolue de log P n’est pas significative ; Au lieu de cela, les valeurs relatives du log ⁡P comptent. Le signal observé vers le jour 42 dans le panneau du milieu représente une caractéristique d’activité instable. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae1367

Les astronomes ont découvert trois exoplanètes potentielles « super-Terres » en orbite autour d’une étoile naine orange relativement proche. Cette découverte pionnière a été réalisée par une équipe internationale de chercheurs dirigée par le Dr Shweta Dalal de l’Université d’Exeter.

Les exoplanètes gravitent autour de l’étoile HD 48498, située à environ 55 années-lumière de la Terre. Ces planètes tournent autour de leur étoile hôte en 7, 38 et 151 jours terrestres, respectivement. Il convient de noter que l’exoplanète candidate est située dans la zone habitable de son étoile hôte, où les conditions peuvent permettre à l’eau liquide d’exister sans bouillir ni geler. Cette zone, souvent appelée zone Boucle d’or, est idéale pour soutenir la vie.

Les chercheurs soulignent l’importance de cette découverte, notant que cette étoile orange ressemble quelque peu à notre soleil et représente le système planétaire le plus proche d’héberger une super-Terre dans la zone habitable autour d’une étoile semblable au soleil.

C’est l’étude qui a détaillé ces résultats Publié dans la revue MNRAS Le 24 juin 2024.

Les astronomes découvrent trois planètes terrestres géantes potentielles autour d’une étoile proche

Le graphique montre le nombre d’observations par semestre d’octobre 2013 à avril 2023. Chaque barre montre le nombre d’observations effectuées à chaque semestre au cours de la période de dix ans. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae1367

Le Dr Dalal a déclaré : « La découverte de cette super-Terre dans la zone habitable autour d’une étoile orange est une avancée passionnante dans notre quête visant à trouver des planètes habitables autour d’étoiles de type solaire. »

Ces super-Terres potentielles, planètes dont la masse est supérieure à celle de la Terre mais bien inférieure à celle des géantes de glace du système solaire, Uranus et Neptune, ont été identifiées par le programme HARPS-N Rocky Planet Search. En une décennie, l’équipe a collecté près de 190 mesures de vitesse radiale à haute résolution à l’aide du spectromètre HARPS-N.

Les mesures de vitesse radiale, qui suivent les mouvements infimes de l’étoile provoqués par les planètes en orbite autour d’elle, sont cruciales pour de telles découvertes. En analysant le spectre de la lumière d’une étoile, les chercheurs peuvent déterminer si elle se dirige vers nous (décalage vers le bleu) ou s’éloigne de nous (décalage vers le rouge). Pour garantir l’exactitude de leurs résultats, l’équipe a utilisé différentes méthodologies et analyses comparatives.

La recherche a révélé trois planètes candidates avec des masses allant de 5 à 11 fois la masse de la Terre. L’équipe suggère que la proximité de l’étoile, combinée à l’orbite privilégiée de l’exoplanète, fait de ce système une cible prometteuse pour les futures études d’imagerie directe à contraste élevé et spectroscopiques à haute résolution.

Le Dr Dalal a ajouté : « Cette découverte met en évidence l’importance de l’observation à long terme et des technologies avancées pour découvrir les secrets des systèmes stellaires lointains. Nous souhaitons poursuivre nos observations et rechercher d’autres planètes dans le système. »

Cette découverte ouvre de nouvelles portes à la compréhension des systèmes planétaires et à la possibilité de vie en dehors de notre système solaire.

Plus d’information:
S. Dalal et al., Un trio de candidats super-Terres en orbite autour du nain K HD 48948 : un nouveau candidat pour une zone habitable, Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae1367

Fourni par l’Université d’Exeter


la citation: Les astronomes trouvent trois super-Terres potentielles autour d’une étoile proche (24 juin 2024) Récupéré le 24 juin 2024 sur https://phys.org/news/2024-06-astronomers-potential-super-earths-nearby.html

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  La manière dont les fourmis coupeuses de feuilles cultivent un jardin fongique pour décomposer les plantes pourrait donner un aperçu des futurs biocarburants.
Continue Reading

science

Prévisions de tempête solaire aujourd’hui : la NOAA déclenche une alerte de tempête géomagnétique ; Il peut être lié au réseau électrique | Actualités scientifiques

Published

on

Prévisions de tempête solaire aujourd’hui : la NOAA déclenche une alerte de tempête géomagnétique ;  Il peut être lié au réseau électrique |  Actualités scientifiques

Prévisions de tempête solaire aujourd’hui : les prévisions météorologiques spatiales de la NOAA indiquent que la Terre va frapper et que des aurores boréales pourraient être attendues.

Tempête solaire prévue aujourd’hui : l’alerte de la NOAA suggère qu’il pourrait effectivement y avoir des fluctuations dans le réseau électrique. (NASA)

Une tempête solaire pourrait frapper la Terre et déclencher de magnifiques aurores boréales dans le ciel du nord, selon un avertissement de la National Oceanic and Atmospheric Administration (NOAA). Ceux qui vivent au Canada en particulier peuvent avoir l’opportunité de capturer les couleurs vibrantes dans les moindres détails. L’aurore sera le résultat d’une éjection de masse coronale (CME) du Soleil. Même si elle a parcouru une grande distance dans l’espace pour frapper la Terre, la tempête aura quand même beaucoup de force lorsqu’elle frappera. Cela suffirait à provoquer une aurore boréale qui apporterait probablement une grande joie aux observateurs du ciel ainsi qu’aux photographes.

Où la tempête solaire frappera-t-elle la Terre ?

Selon le Centre de prévision météorologique spatiale de la NOAA (National Oceanic and Atmospheric Administration), la zone d’impact probable sur notre planète est Il est situé principalement vers le pôle, à environ 65° de latitude géomagnétique. La National Oceanic and Atmospheric Administration (NOAA) s’attend à ce que l’indice géomagnétique K atteigne 4.

Cette tempête solaire affectera-t-elle le réseau électrique ?

« De faibles fluctuations d’énergie peuvent se produire », selon le rapport de la National Oceanic and Atmospheric Administration (NOAA).

Cependant, ces tempêtes géomagnétiques peuvent également surcharger les réseaux électriques et provoquer des pannes de courant. Une panne de courant massive au Canada s’est produite au Québec en 1989. Notamment, toute la région est restée sans électricité pendant des heures. En fait, cela a causé Le réseau hydroélectrique du Québec s’effondrerait effectivement, causant des dégâts massifs et laissant le public sans électricité, y compris les services d’urgence pris au dépourvu.

READ  Prix ​​de recherche SFI de 4,88 millions d'euros pour un scientifique de premier plan en thérapie cellulaire - Actualités et événements

Cela signifie également que chaque fois qu’une tempête géomagnétique est annoncée, les sociétés de réseaux électriques doivent se précipiter pour protéger leurs systèmes en prenant diverses mesures.

Où cette tempête solaire déclenchera-t-elle les aurores boréales ?

Selon la National Oceanic and Atmospheric Administration (NOAA), la tempête solaire pourrait déclencher des aurores boréales à des latitudes élevées comme au Canada et aux États-Unis, en particulier dans le nord de l’Alaska.

La tempête solaire devrait également perturber les communications radio pendant quelques minutes.

Comment les tempêtes solaires déclenchent-elles les tempêtes géomagnétiques ?

En termes simples, lorsque le Soleil entre en éruption, il envoie d’énormes quantités d’énergie (plasma) dans l’espace. Si certains d’entre eux étaient dirigés vers la Terre, le résultat serait une tempête géomagnétique. Toute l’énergie transportée par la tempête solaire frappe le champ magnétique terrestre, créant une tempête géomagnétique. En fait, le champ magnétique évite aux humains d’être exposés à des doses mortelles de rayonnement.

Continue Reading

Trending

Copyright © 2023