Connect with us

science

Les chercheurs contournent un obstacle de longue date en observant la structure de spin dans le graphène « à angle magique »

Published

on

Les chercheurs contournent un obstacle de longue date en observant la structure de spin dans le graphène « à angle magique »

Des chercheurs de l’Université Brown et des collaborateurs ont trouvé un moyen d’observer directement le spin électronique dans des matériaux bidimensionnels tels que le graphène, une propriété auparavant difficile à mesurer dans ces matériaux. L’équipe a utilisé une nouvelle technique pour détecter de petits changements dans la résistance électronique, ouvrant la voie aux progrès de l’informatique quantique et des technologies de communication. Crédit : Jia Li/Université Brown

Une équipe de scientifiques, dirigée par des chercheurs de l’Université Brown, a découvert une solution à un obstacle de longue date dans le monde de l’électronique bidimensionnelle, en étudiant la structure de spin de «l’angle magique».[{ » attribute= » »>graphene.

Over the past twenty years, physicists have been attempting to directly influence the spin of electrons in 2D materials such as graphene. Successfully achieving this could catalyze significant progress in the rapidly developing realm of 2D electronics,, a field where super-fast, small and flexible electronic devices carry out computations based on quantum mechanics.

However, a major obstacle is that the standard method scientists use to gauge the spin of electrons — an essential behavior that gives everything in the physical universe its structure — usually doesn’t work in 2D materials.

This makes it incredibly difficult to fully understand the materials and propel forward technological advances based on them. But a team of scientists led by Brown University researchers believes they now have a way around this longstanding challenge. They describe their solution in a new study published in Nature Physics.

In the study, the team — which also include scientists from the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the University of Innsbruck — describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation. Called a coupling, the absorption of microwave photons by electrons establishes a novel experimental technique for directly studying the properties of how electrons spin in these 2D quantum materials — one that could serve as a foundation for developing computational and communicational technologies based on those materials, according to the researchers.

“Spin structure is the most important part of a quantum phenomenon, but we’ve never really had a direct probe for it in these 2D materials,” said Jia Li, an assistant professor of physics at Brown and senior author of the research. “That challenge has prevented us from theoretically studying spin in these fascinating materials for the last two decades. We can now use this method to study a lot of different systems that we could not study before.”

The researchers made the measurements on a relatively new 2D material called “magic-angle” twisted bilayer graphene. This graphene-based material is created when two sheets of ultrathin layers of carbon are stacked and twisted to just the right angle, converting the new double-layered structure into a superconductor that allows electricity to flow without resistance or energy waste. Just discovered in 2018, the researchers focused on the material because of the potential and mystery surrounding it.

“A lot of the major questions that were posed in 2018 have still yet to be answered,” said Erin Morissette, a graduate student in Li’s lab at Brown who led the work.

Physicists usually use nuclear magnetic resonance or NMR to measure the spin of electrons. They do this by exciting the nuclear magnetic properties in a sample material using microwave radiation and then reading the different signatures this radiation causes to measure spin.

The challenge with 2D materials is that the magnetic signature of electrons in response to the microwave excitation is too small to detect. The research team decided to improvise. Instead of directly detecting the magnetization of the electrons, they measured subtle changes in electronic resistance, which were caused by the changes in magnetization from the radiation using a device fabricated at the Institute for Molecular and Nanoscale Innovation at Brown. These small variations in the flow of the electronic currents allowed the researchers to use the device to detect that the electrons were absorbing the photos from the microwave radiation.

The researchers were able to observe novel information from the experiments. The team noticed, for instance, that interactions between the photons and electrons made electrons in certain sections of the system behave as they would in an anti-ferromagnetic system — meaning the magnetism of some atoms was canceled out by a set of magnetic atoms that are aligned in a reverse direction.

The new method for studying spin in 2D materials and the current findings won’t be applicable to technology today, but the research team sees potential applications the method could lead to in the future. They plan to continue to apply their method to twisted bilayer graphene but also expand it to other 2D materials.

“It’s a really diverse toolset that we can use to access an important part of the electronic order in these strongly correlated systems and in general to understand how electrons can behave in 2D materials,” Morissette said.

Reference: “Dirac revivals drive a resonance response in twisted bilayer graphene” by Erin Morissette, Jiang-Xiazi Lin, Dihao Sun, Liangji Zhang, Song Liu, Daniel Rhodes, Kenji Watanabe, Takashi Taniguchi, James Hone, Johannes Pollanen, Mathias S. Scheurer, Michael Lilly, Andrew Mounce and J. I. A. Li, 11 May 2023, Nature Physics.
DOI: 10.1038/s41567-023-02060-0

The experiment was carried out remotely in 2021 at the Center for Integrated Nanotechnologies in New Mexico. Mathias S. Scheurer from the University of Innsbruck provided theoretical support for modeling and understanding the result. The work included funding from the National Science Foundation, the U.S. Department of Defense, and the U.S. Department of Energy’s Office of Science.

READ  La mission Hera de l'ESA transporte deux cubesats. Ils atterriront sur Dimorphos
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La chaleur du manteau a formé la croûte terrestre il y a 3 milliards d'années • Earth.com

Published

on

La chaleur du manteau a formé la croûte terrestre il y a 3 milliards d'années • Earth.com

L'évolution de la croûte continentale terrestre au début de son histoire contient des indices sur les processus dynamiques qui ont façonné notre planète. Depuis des décennies, les scientifiques débattent d'un changement majeur dans la composition de la croûte terrestre survenu il y a environ 3 milliards d'années.

Si la tectonique des plaques a sans aucun doute joué un rôle, de nouvelles recherches de… Institut de géochimie de Guangzhou Remet en question l’idée des forces tectoniques comme cause principale. Cela indique un rôle surprenant dans l'augmentation de la chaleur au sein du manteau terrestre.

Le zircon dans l'histoire géologique de la Terre

Le zircon, un minéral exceptionnellement malléable, constitue un dépositaire essentiel de l'histoire géologique de la Terre. Ces cristaux proviennent des profondeurs de la roche en fusion et capturent les conditions de leur formation dans leur composition chimique unique.

Lorsque le zircon durcit, il encapsule les isotopes de divers éléments tels que l'oxygène, le hafnium et l'uranium. En examinant ces isotopes, les scientifiques acquièrent des informations inestimables sur l'âge et l'évolution de la croûte terrestre.

Cette analyse permet aux chercheurs de construire une chronologie détaillée des événements géologiques. Cela les aide à comprendre les processus dynamiques qui ont influencé la formation et la structure de la croûte continentale sur des milliards d’années.

Régénération de la croûte terrestre

L'analyse géochimique des cristaux de zircon a révélé un changement majeur dans la composition de la croûte terrestre il y a environ 3 milliards d'années. Ce métamorphisme, caractérisé par un changement dans les rapports isotopiques spécifiques, indique un processus de « rajeunissement » de la croûte terrestre – l'ajout de matériaux nouvellement formés à une croûte continentale plus ancienne.

READ  Le télescope James Webb détecte la lumière extraterrestre en dehors de notre système solaire. Voici ce que dit la NASA

Traditionnellement, le renouvellement de la croûte terrestre a été attribué à une activité tectonique mondiale accrue. Cette théorie indique que le mouvement de plaques tectoniques massives à la surface de la Terre a conduit au recyclage d'anciens matériaux de la croûte terrestre.

Cependant, de nouvelles recherches offrent une perspective différente. L'étude suggère que les changements souterrains pourraient avoir joué un rôle plus important dans le rajeunissement de la Terre qu'on ne le pensait auparavant.

Rôle de la chaleur du manteau

Les recherches mettent en évidence une augmentation significative de la chaleur émanant du manteau terrestre il y a environ trois milliards d'années. L'augmentation de l'énergie thermique pourrait être causée par des changements dans les processus de désintégration radioactive au sein du manteau.

Cela a entraîné une augmentation du dégagement de chaleur. Les conséquences d’une augmentation de la température du manteau sur la croûte située au-dessus pourraient être énormes. Une chaleur intense peut provoquer une fonte partielle des régions inférieures de la croûte, conduisant éventuellement à la formation de mares de magma à la limite croûte-manteau.

À mesure que ce magma nouvellement formé s’élève et interagit avec les matériaux crustaux existants, il entraînera des changements dans la composition de la croûte. Ces modifications conduisent souvent à la formation de nouveaux types de roches et laissent des signatures géochimiques distinctes.

De tels changements sont particulièrement visibles dans les cristaux de zircon trouvés dans ces roches. Le zircon, grâce à sa capacité à encapsuler et à préserver les signatures chimiques de son environnement de formation, constitue un excellent enregistreur de ces processus.

READ  Les scientifiques étudient les informations sensorielles sur lesquelles les papillons colibris s'appuient pour contrôler leur trompe.

En analysant la composition isotopique et élémentaire du zircon, les scientifiques peuvent retracer ces événements transformateurs dans la croûte terrestre, obtenant ainsi un aperçu des interactions dynamiques entre la chaleur du manteau et les structures crustales sus-jacentes.

Retravailler la croûte terrestre et la croissance des continents

Il semble que le remodelage de la croûte terrestre dû à l'augmentation de la température du manteau ait été un facteur décisif dans l'expansion des masses continentales de la planète. À mesure que le manteau se réchauffait, la croûte inférieure fondait et générait du magma flottant.

Une fois durci, le nouveau matériau ajoute du volume et de la flottabilité à la coque, l'épaississant ainsi efficacement. Ce processus a probablement contribué de manière significative à la création et à la stabilité de grandes masses continentales.

L’épaississement de la croûte dû à l’ajout de magma nouvellement formé provenant des profondeurs de la Terre offre une perspective alternative aux vues traditionnelles qui mettent l’accent sur les activités tectoniques de surface, telles que les mouvements des plaques, comme principaux moteurs de la croissance continentale.

Le modèle basé sur la température met l’accent sur l’importance des processus géodynamiques internes, montrant à quel point la dynamique de la Terre est intimement liée aux changements observés à la surface.

En reconnaissant le rôle de la chaleur du manteau dans la formation des continents terrestres, les scientifiques mettent en évidence l'interconnexion entre les processus internes de la planète et ses caractéristiques géologiques externes.

Cette approche remet non seulement en question l'accent traditionnel mis sur la tectonique de surface, mais enrichit également notre compréhension de l'histoire géologique de la Terre en montrant comment les conditions souterraines influencent le développement et l'évolution des structures continentales.

READ  Le télescope de l'ESO filme une incroyable danse cosmique

L'évolution de la Terre reconsidérée

Cette recherche appelle à reconsidérer notre compréhension des années de formation de la Terre. Alors que les zones de subduction (où une plaque tectonique s'enfonce sous une autre) étaient actives au début de la Terre, leur influence sur la croissance de la croûte pourrait avoir été complétée par des processus profonds du manteau.

Élucider l'interaction entre la thermodynamique interne et la tectonique de surface est crucial pour construire un modèle complet de l'évolution de notre planète.

L'étude d'anciens cristaux de zircon met en lumière l'histoire complexe de la croûte continentale terrestre. Si les forces tectoniques restent essentielles, ces recherches soulignent l’importance de la chaleur interne dans la formation des continents que nous habitons.

La poursuite des recherches sur l'histoire profonde de la Terre améliorera sans aucun doute notre compréhension de sa transformation remarquable au cours de milliards d'années et donnera un aperçu des caractéristiques uniques qui rendent notre planète habitable.

L'étude est publiée dans la revue Lettres de recherche géophysique.

—–

Vous aimez ce que j'ai lu ? Abonnez-vous à notre newsletter pour recevoir des articles intéressants, du contenu exclusif et les dernières mises à jour.

Visitez-nous sur EarthSnap, une application gratuite présentée par Eric Ralls et Earth.com.

—–

Continue Reading

science

Tester une nouvelle technologie de cartographie 3D pour transformer l’exploration spatiale et bénéficier aux industries sur Terre

Published

on

Tester une nouvelle technologie de cartographie 3D pour transformer l’exploration spatiale et bénéficier aux industries sur Terre

Centre spatial Kennedy, Floride., 26 avril 2024 /PRNewswire/ — Lorsque vous partez en voyage, vous pouvez rechercher une carte pour vous aider à naviguer dans votre voyage ou allumer le GPS sur votre téléphone. Mais que se passe-t-il si la destination est sur une autre planète et qu’il n’y a pas de carte ? Un nouveau projet parrainé par le Laboratoire national de la Station spatiale internationale (ISS) peut aider. Cette enquête, appelée Multi-Resolution Scanner (MRS), exploitera le système robotique volant libre Astrobee de la NASA sur la station spatiale pour tester une nouvelle technologie de cartographie 3D capable de produire des cartes détaillées d'environnements distants.

Le projet, une collaboration entre Boeing et le CSIRO (une agence gouvernementale australienne responsable de la recherche scientifique), souligne l'importance des partenariats internationaux tout en s'appuyant sur la riche histoire du duo dans l'industrie spatiale mondiale. comme Australie L'agence scientifique nationale, le CSIRO, a contribué de manière significative au secteur spatial. Par exemple, lors de l'alunissage d'Apollo 11 en 1969, le radiotélescope Parkes du CSIRO, Moreang, a reçu des signaux de télévision de cet événement historique qui ont été regardés par près de 600 millions de téléspectateurs dans le monde. Aujourd’hui, l’organisation travaille sur un projet qui profitera non seulement aux futures missions d’exploration, mais également aux principales industries de la planète.

MRS est conçu pour créer rapidement des cartes 3D de divers environnements avec des détails sans précédent, comme une station spatiale ou même un tube de lave sur la Lune ou sur Mars. « Nous utiliserons les robots volants libres Astrobee de la NASA pour tester le MRS, ce qui nous permettra de créer des cartes 3D du module Kibo de la station spatiale », a déclaré Mark Elmotti, chef du groupe de recherche au CSIRO. « La technologie que nous utilisons combine plusieurs capteurs, ce qui compense les faiblesses de chacun d'entre eux et fournit des données de trajectoire 3D haute résolution et plus précises pour comprendre comment le robot se déplace dans l'espace. »

READ  Le télescope James Webb détecte la lumière extraterrestre en dehors de notre système solaire. Voici ce que dit la NASA

Que ce soit à bord de la station spatiale ou à la surface de Mars, les explorateurs robotiques doivent utiliser des capteurs embarqués et des algorithmes de perception pour construire des cartes détaillées de l'environnement tout en déterminant simultanément leur emplacement au sein de celui-ci. Cette capacité est appelée localisation et mappage simultanés, ou SLAM. MRS s'appuie sur un logiciel de photogrammétrie avancé appelé Stereo-Depth Fusion et sur la technologie 3D SLAM, que le CSIRO appelle Wildcat. Le logiciel permet au MRS de cartographier, d’analyser et de naviguer de manière indépendante dans son environnement.

Pour vérifier que le programme fonctionne dans l'espace, Elmuti et son équipe cartographient un emplacement connu sur la station spatiale : le module Kibo. L'enquête sur la station spatiale a débuté en mars La 30e mission de services de réapprovisionnement commercial (CRS) de SpaceX, sous contrat avec la NASA. Une fois arrivé à la station, le MRS a été installé dans l'un des trois robots Astrobee.

Commencer avec Kibo permet à l’équipe de vérifier les cartes résultantes et de les comparer avec des contrôles pour voir dans quelle mesure la technologie fonctionne en microgravité. Des expériences au sol antérieures ont montré que les capacités de cartographie et de positionnement très précises du logiciel peuvent permettre à des robots comme Astrobee de naviguer avec succès dans des environnements dangereux, complexes et non structurés sans GPS ou autres informations de positionnement externes.

En cas de succès, MRS pourrait s'étendre à d'autres modules de la station spatiale, augmentant ainsi ses capacités de cartographie. Les résultats de cette enquête contribueront à faire progresser la technologie au point où elle pourra être utilisée dans les futures missions de vols spatiaux et les efforts d’exploration. La Station spatiale internationale est habitée en permanence depuis plus de 20 ans, mais les futures stations spatiales ne seront peut-être pas toutes habitées par des humains. La passerelle lunaire prévue par la NASA, ainsi que d'autres avant-postes dans l'espace, pourraient être peuplés principalement de robots. Cette technologie permettra aux assistants robotiques de maintenir les systèmes en fonctionnement autonome lorsque les humains ne sont pas là.

READ  désolé proie. Les veuves noires ont une mémoire étonnamment bonne

« Boeing s'engage à fournir des capacités améliorées et une sécurité renforcée pour les vols vers la Lune et au-delà », a-t-elle déclaré. Scott CopelandDirecteur de l'intégration de la recherche sur la Station spatiale internationale chez Boeing. « Cela nécessite l'intersection des missions de l'équipage et des robots, et la technologie de numérisation multi-résolution démontrée à bord de notre banc d'essai en orbite terrestre basse sera un outil puissant pour nous aider à atteindre ces objectifs. »

Nous verrons peut-être un jour une version du MRS sur d’autres planètes, installée sur des rovers ou des hélicoptères qui utilisent cette technologie pour cartographier le terrain et explorer des ressources précieuses. MRS peut également identifier les dommages potentiels causés aux engins spatiaux dus à des micrométéorites ou à d’autres impacts, ce qui est particulièrement utile sur les sites sans équipage de manière continue, renforçant ainsi la valeur des robots soignants. La technologie MRS peut également bénéficier à de nombreuses industries sur Terre, telles que l’exploitation minière et les secours en cas de catastrophe.

Apprenez-en davantage sur Astrobees et sur la manière dont d'autres enquêtes parrainées par le Laboratoire national de l'ISS utilisent des assistants robotiques dans le dernier numéro de en haut®le journal officiel du Laboratoire national de la Station spatiale internationale. est en train de lire « Robots volants libres dans l'espace : comment de vrais robots testent les nouvelles technologies. »

Pour télécharger une image haute résolution de cette version, cliquer ici.

À propos du Laboratoire national de la Station spatiale internationale :
La Station spatiale internationale (ISS) est un laboratoire unique qui permet des recherches et des développements technologiques impossibles sur Terre. En tant qu'institution de service public, le Laboratoire national de l'ISS permet aux chercheurs de tirer parti de cette installation multi-utilisateurs pour améliorer la qualité de vie sur Terre, faire évoluer les modèles commerciaux spatiaux, faire progresser les connaissances scientifiques de la main-d'œuvre future et développer un marché durable et évolutif dans les pays à faible revenu. pays à revenus. L'orbite terrestre. Grâce à ce laboratoire national en orbite, les ressources de recherche de l'ISS sont disponibles pour soutenir les initiatives scientifiques, technologiques et éducatives non-NASA émanant d'agences gouvernementales américaines, d'établissements universitaires et du secteur privé. Le Centre pour l'avancement de la science dans l'espace (CASIS™) gère le Laboratoire national de la Station spatiale internationale, dans le cadre d'un accord de coopération avec la NASA, facilitant l'accès à un environnement de recherche permanent en microgravité, à un point d'observation puissant en orbite terrestre basse et à des conditions difficiles. et des conditions diverses. depuis l'espace. Pour en savoir plus sur le Laboratoire national de la Station spatiale internationale, visitez Notre emplacement.

READ  Une étude génétique des bactéries chez les bovins en Chine montre une résistance croissante aux antibiotiques

En tant qu'organisation à but non lucratif de type 501(c)(3), CASIS accepte les dons d'entreprises et de particuliers pour contribuer à faire progresser la science dans l'espace au profit de l'humanité. Pour plus d'informations, visitez notre site web Page de dons.


Laboratoire national de la Station spatiale internationale (ISS).
Géré par le Centre pour l'avancement des sciences dans l'espace (CASIS)

6905 N. Wickham Road, Suite 500, Melbourne, FL 32940 · 321.253.5101 · www.ISSNationalLab.org

Source : Laboratoire national de la Station spatiale internationale

Continue Reading

science

Jupiter a-t-il des anneaux ? Oui elle est comme ça

Published

on

Jupiter a-t-il des anneaux ?  Oui elle est comme ça

Nous connaissons tous les anneaux magiques de Saturne, mais Jupiter a-t-il des anneaux ? Oui elle est comme ça.

Eh bien, Jupiter n'a pas de grands anneaux clairement définis comme celui de Saturne, mais ils existent.

En fait, les anneaux de Jupiter sont si faibles qu'ils sont invisibles à l'œil nu et extrêmement difficiles à détecter, même avec des télescopes puissants. Mais ils sont bel et bien là.

Ils ont été observés et photographiés par les vaisseaux spatiaux Voyager et Galileo, la mission Cassini, le télescope Keck et, plus récemment, par le télescope spatial James Webb.

Les anneaux de Jupiter apparaissent sous la forme de deux lignes orange clair, capturées par Voyager 2 à une distance de 1 450 000 kilomètres (900 000 miles). Cliquez pour agrandir. Crédit : NASA/JPL

Combien d’anneaux Jupiter a-t-il ?

Jupiter possède quatre structures annulaires principales.

En regardant vers l'extérieur de la planète elle-même, il y a un épais « anneau corona » intérieur, d'une épaisseur de 12 500 km.

Puis « l'anneau principal » qui est très brillant et très fin, seulement 30 kilomètres d'épaisseur par endroits.

Et deux « anneaux fins » épais mais très ternes.

L'anneau aréolaire est de couleur neutre ou bleuâtre, tandis que les anneaux principal et filamenteux ont une couleur rougeâtre.

Diagramme de marque NASA montrant la structure du système d'anneaux de Jupiter.  Jupiter possède quatre structures en anneaux au total.  Source : NASA/JPL/Université Cornell
Diagramme de marque NASA montrant la structure du système d'anneaux de Jupiter. Jupiter possède quatre structures en anneaux au total. Cliquez pour agrandir. Source : NASA/JPL/Université Cornell

Formation des anneaux de Jupiter

On pense que les anneaux entourant Jupiter sont constitués de matériaux – principalement sous la forme de très fines particules de poussière – précédemment éjectés des lunes Metis et Adrastia à la suite de collisions avec des astéroïdes, des météorites ou des comètes.

La question de savoir si les anneaux sont aussi vieux que Jupiter lui-même ou s'ils se sont formés plus tard est une question à laquelle on n'a pas encore répondu.

La large bande de lumière traversant en diagonale le centre de cette image est la première preuve des anneaux de Jupiter, vus par le vaisseau spatial Voyager 1 le 4 mars 1979. Le bord de l'anneau était à 1 212 000 km du vaisseau spatial et à 57 000 km du nuage visible à la surface de Jupiter.  Les lignes bancales sont des étoiles d’arrière-plan dont l’apparence est affectée par le mouvement du vaisseau spatial.  Crédit : NASA/JPL
La large bande de lumière traversant en diagonale le centre de cette image est la première preuve des anneaux de Jupiter, que Voyager 1 a vus le 4 mars 1979. Le bord de l'anneau était à 1 212 000 km du vaisseau spatial et à 57 000 km de la surface visible des nuages ​​de Jupiter. . . Les lignes bancales sont des étoiles d’arrière-plan dont l’apparence est affectée par le mouvement du vaisseau spatial. Cliquez pour agrandir. Crédit : NASA/JPL

Découverte

Les anneaux de Jupiter sont si faibles que nous n'avions aucune idée de leur existence jusqu'à ce que les images soient renvoyées par la sonde spatiale Voyager 1 en 1979.

READ  Le télescope de l'ESO filme une incroyable danse cosmique

Ce que nous en savons aujourd'hui provient principalement des images supplémentaires réalisées par les missions Galileo et Cassini de la NASA à la fin des années 1990 et au début des années 2000, ainsi que des observations faites par le télescope spatial Hubble et le télescope Keck au sol.

Les scientifiques pensent maintenant que c'est la gravité des quatre grandes lunes galiléennes de Jupiter (Ganymède, Callisto, Io et Europe) qui a empêché Jupiter de former de grands anneaux sophistiqués comme ceux entourant sa voisine géante gazeuse, Saturne.

Photos des anneaux de Jupiter

Continue Reading

Trending

Copyright © 2023